

APPENDIX 12:

Additional Field Study Reports and Memoranda

WETLAND DELINEATION AND FUNCTIONAL ASSESSMENT
MIGRATORY BIRDS
INTERTIDAL HABITAT
EELGRASS DELINEATION
GEOPHYSICS INVESTIGATION
VISUAL ASSESSMENT

WETLAND DELINEATION AND FUNCTIONAL ASSESSMENT JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

July 2024

DOWL No: 1138.63234.01 State No: SFHWY00299 Federal No: 0003259

JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

Wetland Delineation and Functional Assessment

Program No: SFHWY00299 Federal No: 0003259

Prepared for:

The State of Alaska, Department of Transportation and Public Facilities
Southcoast Region
6860 Glacier Highway
Juneau, AK 99811

Prepared by:

DOWL 5015 Business Park Blvd Suite 4000 Anchorage, AK 99503

July 2024

DOWL Project No: 1138.63234.01

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated April 13, 2023, and executed by the Federal Highway Administration and the State of Alaska Department of Transportation and Public Facilities.

TABLE OF CONTENTS

EXE	CUT	IVE SUMMARY	II
1.0	INT 1.1	FRODUCTION Environmental Setting 1.1.1 Regional Characteristics 1.1.2 Study Area Characteristics Precipitation and Climatic Data	1 1 2
2.0	ME	THODS	
	2.1	Existing Data and Preparatory Analysis	
	2.2	Field Data Collection	
		2.2.2 Functional Assessment Method	
3.0	DE	SULTS	
3.0	3.1	Data Summary	
	3.1	Hydrophytic Vegetation, Hydric Soils, and Hydrology	
	0.2	3.2.1 Vegetation	
3.2.2 Soils			
		3.2.3 Hydrology	
	3.3	Wetlands	
		3.3.1 Palustrine Emergent Wetland	11
		3.3.2 Palustrine Scrub-Shrub Wetland	
	3.4	Waterbodies	
	0.1	3.4.1 Estuarine	
		3.4.2 Lacustrine	
		3.4.3 Riverine	15
		3.4.4 Marine	
	3.5	Uplands	17
4.0	FUI	NCTIONAL ASSESSMENT	17
	4.1	WESPAK-SE	20
		4.1.1 Mendenhall Peninsula	
		4.1.2 Sunny Point West	
		4.1.3 Sunny Point East	
		4.1.4 Sunny Point East and West4.1.5 Vanderbilt	
		4.1.6 Twin Lakes	
		4.1.7 Salmon Creek	
5.0	DIS	SCUSSION	22
		FERENCES	
O.U	KE	FERENCES	

TABLES

Table 1: Project Location within the Copper River Meridian	
Photo Set 1: Typical Palustrine Emergent Wetlands in the Study Area (SP-41, PP-47)	
Photo Set 2: Typical Falustiffe Effective transfer Wetlands in the Study Area (SP-8, SP-11)	
Photo Set 3: Typical Forested Wetlands in the Study Area (SP-1)	
Photo Set 4: Typical Estuarine Intertidal Irregularly Flooded Wetlands in the Study Area	
(SP-12, PP-52)13	
Photo Set 5: Typical Estuarine Intertidal Irregularly Flooded or Exposed Wetlands in the	
Study Area (PP-16, PP-37)	
Photo Set 7: Typical Lacustrine Habitat in the Study Area (PP-41)	
Photo Set 8: Typical Riverine Habitat in the Study Area (R1: PP-39, R2: PP-34)	
Photo Set 9: Typical Marine Habitat in the Study Area (PP-52 and a photo taken near	
North Douglas Boat Launch)16	
Photo Set 10: Typical Upland Habitats in the Study Area, (SP-5, SP-6)17	

APPENDICES

Appendix 1: Figures

Appendix 2: Datasheets and Plant Species

Appendix 3: Photo Log

Appendix 4: Wetland Functional Assessment Appendix 5: Antecedent Precipitation Figures

ACRONYMS AND ABBREVIATIONS

AA	Assessment Area
ADF&G	Alaska Department of Fish and Game
APT	Antecedent Precipitation Tool
DOT&PF	Department of Transportation & Public Facilities
EM	Emergent
FAC	Facultative
FACU	Facultative Upland
FACW	Facultative Wetland
FO	Forested
GIS	Geographic information system
HTL	high tide line
HUC	Hydrologic unit codes
	inches
	Mean High Water
	millimeters
MWGSR or Refuge	Mendenhall Wetlands Game State Refuge
	National Wetlands Inventory
NRCS	National Resource Conservation Service
OBL	Obligate
	Planning and Environmental Linkage
PP	Photo Point
SB	Streambed
	Sample Point
SS	Scrub-shrub
USACE	United States Army Corps of Engineers
USGS	U.S. Geological Survey
	Unconsolidated shore
WESPAK-SE	Wetland Ecosystem Services Protocol for Southeast Alaska

EXECUTIVE SUMMARY

The City and Borough of Juneau has partnered with Alaska Department of Transportation and Public Facilities to explore a north crossing between Juneau and Douglas Island, north of the existing Douglas Island Bridge. DOT&PF has chosen the Planning and Environmental Linkage process to evaluate the purpose and need for a north crossing, identify potential north crossing alternatives, evaluate the alternatives, and identify recommended crossing(s).

The approximate 695.5-acre study area, which includes a 150-foot buffer for the six potential crossing alignments: Mendenhall Peninsula, Sunny Point West, Sunny Point East, Vanderbilt, Twin Lakes, and Salmon Creek. The beginning of the project is located 58.341963 North Latitude; -134.628022 West Longitude and the end of the project is located at 58.299292 North Latitude; -134.429609 West Longitude, Copper River Meridian.

The study area crosses tidally influenced Gastineau Channel separating Douglas Island from mainland Juneau. The Mendenhall Wetlands State Game Refuge is located between Juneau and Douglas Island from the Mendenhall Peninsula to approximately the intersection of Glacier Highway and Channel Drive.

Collection of data followed Part IV of the Corps of Engineers Wetlands Delineation Manual, the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska Region [Version 2.0], and the Wetland Ecosystem Services Protocol for Southeast Alaska.

The study area comprises of approximately 29.3 acres (4.2 percent of the study area) of potentially jurisdictional wetlands and 346.4 acres of waterbodies (49.8 percent of the study area), and 319.8 acres of non-jurisdictional uplands (46 percent of the study area). The following table summarizes the wetland delineation and functional assessment (there is overlap between alignments, so acreages will total greater than 695.5 acres).

Alignment	Habitat Type	Acres	Assessment Area	Functional Score
Mendenhall -	Wetland	12.54	AA-1, AA-2, AA-3	6.26, 7.56, 4.18
Peninsula	Waterbodies	67.91	AA-4	2.51
Pelilisuid	Uplands	142.35	N/A ¹	N/A
	Wetland	12.56	AA-5	6.26
Sunny Point West	Waterbodies	60.11	AA-7	6.64
-	Uplands	74.48	N/A	N/A
	Wetland	5.96	AA-6	6.23
Sunny Point East	Waterbodies	48.75	AA-7	6.64
-	Uplands	74.48	N/A	N/A
	Wetland	2.00	AA-9	5.54
Vanderbilt	Waterbodies	93.58	AA-10	5.28
-	Uplands	33.12	N/A	N/A
	Wetland	0.72	AA-11	8.08
Twin Lakes	Waterbodies	80.83	AA-12	6.97
·	Uplands	27.77	N/A	N/A
	Wetland	1.00	AA-13	6.22
Salmon Creek	Waterbodies	27.34	AA-14	6.73
-	Uplands	45.60	N/A	N/A

The acreages of wetlands and waterbodies within the proposed alignments from greatest to least are Vanderbilt, Twin Lakes, Mendenhall Peninsula, Sunny Point West, Sunny Point East, Salmon Creek. The highest functioning wetlands and waterbodies within the proposed alignments from highest to lowest are Vanderbilt, Sunny Point West, Twin Lakes, Sunny Point East, Salmon Creek, Mendenhall Peninsula.

¹ N/A=Not Applicable

1.0 INTRODUCTION

The City and Borough of Juneau has partnered with Alaska Department of Transportation and Public Facilities (DOT&PF) to explore a north crossing between Juneau and Douglas Island, north of the existing Douglas Island Bridge. DOT&PF has chosen the Planning and Environmental Linkage (PEL) process to evaluate the purpose and need for a north crossing, identify potential north crossing alternatives, evaluate the alternatives, and identify recommended crossing(s). In support of the evaluation of alternatives environmental data is being collected to understand potential impacts of six proposed alternatives. One study being undertaken to collect current data on proposed alternatives is a wetland delineation.

The approximate 695.5-acre study area includes the tidally influenced Gastineau Channel between Douglas Island and mainland Juneau, Alaska. The Mendenhall Wetlands State Game Refuge (MWSGR or Refuge) is located between Juneau and Douglas Island from the Mendenhall Peninsula to approximately the intersection of Glacier Highway and Channel Drive. The beginning of the project is located 58.341963 North Latitude; -134.628022 West Longitude and the end of the project is located at 58.299292 North Latitude; -134.429609 West Longitude, Copper River Meridian. (Table 1 for Township, Range, Section (Appendix 1; Figure 1).

Township	Range	Sections
40 South	65 East	25, 26, 27, 34, 36
40 South	66 East	30, 31, 32, 33, 34
41 South	66 East	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17
41 South	67 East	4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 21, 22, 23, 27

Table 1: Project Location within the Copper River Meridian

DOWL was contracted to conduct a wetland delineation and function and values assessment to identify areas that may fall under the United States Army Corps of Engineers (USACE) jurisdiction per Section 404 of the Clean Water Act.

While this report is in support of a planning study, a future recommended alternative may impact jurisdictional Waters of the United States. The data herein is intended to provide a planning level analysis with sufficient information to determine regulatory jurisdiction of aquatic resources subject to Section 404 of the Clean Water Act, and to evaluate the hydrological connectivity of such resources to a traditional navigable waterway, territorial sea, or navigable interstate waterway.

1.1 Environmental Setting

1.1.1 Regional Characteristics

The study area spans between Juneau and Douglas Island, Alaska, which are within two different yet similar United States Department of Agriculture, Natural Resources Conservation

Service (NRCS) defined *Major Land Resource Areas*. Juneau is located within the Alaska's Pacific Coastal Mountains ecoregion, while Douglas Island is located within Alaska's Coastal Western Hemlock-Sitka Spruce Forest ecoregion (NRCS 2022).

The Alaska Pacific Coastal Mountains ecoregion has steep terrain with active glaciers in higher elevations and experiences heavy precipitation. Dwarf and low scrub species dominate the region as slopes are typically barren of vegetation while lower elevations near drainage systems consist of needleleaf forests and dense thickets of low scrub communities (Gallant 1995). The annual growing season spans from May 29th to September 27th (USACE 2007).

The Alaska Coastal Western Hemlock-Sitka Spruce Forest ecoregion has the mildest winter temperatures in Alaska and receives a large amount of precipitation. Much of the terrain (deep and narrow bays, steep valley walls, irregular coastlines, high sea-cliffs, etc.) resulted from intense glaciation. Surface water is present for extended periods, especially early in the growing season, but is absent toward the end of the growing season in most years. When surface water is absent, the water table is often near the land surface. The abundant precipitation, mild temperatures, and undulating terrain with steep slopes generally restrict the establishment of permafrost. Vegetation is a mixture of needle-leaved evergreen forests, tall-to-mid-level scrubshrub swamps or peatlands, and saturated emergent bogs (Gallant 1995). The annual growing season extends from April 29th to September 28th (USACE 2007).

1.1.2 Study Area Characteristics

The study area is approximately 695.5 acres, which includes a 150-foot buffer for the six potential crossing alignments: Mendenhall Peninsula, Sunny Point West, Sunny Point East, Vanderbilt, Twin Lakes, and Salmon Creek. The study area crosses the MWGSR, spans Gastineau Channel separating Douglas Island from mainland Juneau. The majority of the six alignments are within the Salmon Creek-Frontal Gastineau Channel 12-digit Hydrologic Unit watershed (U.S. Geological Survey [USGS] 2023). The southern portion of Mendenhall Peninsula is within Fritz Cove-Frontal Lynn Canal 12-digit Hydrologic Unit watershed (USGS 2023). The western end of Egan Drive crossing Lemon Creek is within Lemon Creek 12-digit Hydrologic Unit watershed (USGS 2023).

The study area has several mapped anadromous stream crossings, depositing freshwater to the Gastineau Channel (Alaska Department of Fish & Game [ADF&G] 2023a). The elevations within the study area range from sea level to 375 feet (ft) above sea level. The MWSGR is a large game refuge managed by ADF&G, approximately 4,000 acres and extends approximately nine miles along the shores of the Gastineau Channel, from Salmon Creek to the eastern side of the Mendenhall Peninsula. The airport was constructed in the 1930s and islands within the Refuge were formed when the channel was dredged in the 1950s (ADF&G 2023b). The study area was once entirely glaciated which still has a strong influence as silt is deposited from several streams into the Gastineau Channel from the Mendenhall Glacier, Thomas Glacier, and Lemon Glacier. Isostatic rebound is causing the land to rise therefore some wetlands to dry as groundwater moves near the surface

Federal and state definitions of navigable waters differ. Federal jurisdiction applies to waters subject to the ebb and flow of the tide, and/or are used or have been used for interstate or

foreign commerce. State jurisdiction applies to tidally influenced areas and rivers/streams used for commerce or travel. The USACE has jurisdiction for structures constructed in or over navigable waterbodies. Navigable waterbodies are areas below the mean high water (MHW) influenced by the ebb and flow of the tide.

Wetlands within the study area include the submerged and intertidal regions dictated by the ebb and flow of the tides. The high tide line (HTL) for Juneau is 20.6 feet and the MHW is 15.6 feet (DOWL 2022b).

1.2 Precipitation and Climatic Data

The USACE Antecedent Precipitation Tool (APT) was used to evaluate climatic conditions prior to fieldwork. The APT uses global historical climatology network weather stations. The APT accumulates the daily precipitation values over a 30-day period and compares to historic normal range of precipitation to determine if surface hydrology or soil moisture conditions observed are normal, drier than normal, or wetter than normal (USACE 2023). The Coastal Western Hemlock-Sitka Spruce Forest and Pacific Coastal Mountains ecoregions have the mildest winters in the State and receives the most precipitation. The Coastal Western Hemlock-Sitka Spruce Forest approximate mean precipitation is from 1,350 millimeters (mm) (53 inches) to 3,900 mm (153.5 inches) while the Coastal Pacific Mountain receives approximately 2,030 mm (80 inches) to 7,000 mm (575.5 inches) (Gallant et al 1995).

The APT (2023) reported general conditions based on data from the following weather stations:

- Auke Bay
- Juneau 3.0 NW
- Juneau 2.8 NW
- Juneau Forecast Office
- Juneau Airport

Based on the APT, Juneau reported normal conditions for fieldwork conducted on September 18th followed with drier than normal conditions from September 19th through 20th (Appendix 5, Figure 1 and Figure 2). Wetter than normal conditions were reported from September 21st through 22nd (Appendix 5, Figure 3). Douglas Island reported normal conditions from September 18th through 19th (Appendix 5, Figure 4). Wetter than normal conditions were reported from September 20th through 22nd (Appendix 5, Figure 5). During the four field days, Juneau Airport reported approximately 4.33 inches of precipitation. The Juneau area received approximately 13.64 inches of precipitation during the month of September, which exceeds 10.42 inches (threshold for 30 percent chance precipitation is more than for September) (Utah Climate Center 2023).

Observed surface water reflected normal conditions. The week preceding fieldwork Juneau Airport reported 6.03 inches of precipitation and additional precipitation occurred during fieldwork; precipitation exceeded September's monthly average. Areas of the project located where normal conditions were reported, surface and groundwater field observations were typical

for this time of year. In areas of the project where wetter than normal conditions were reported, surface and groundwater field observations may be present in uplands as well as marginal wetlands with saturated soils, areas of inundations (surface water), or high groundwater table.

2.0 METHODS

2.1 Existing Data and Preparatory Analysis

The following sources were reviewed for the study area:

- USGS Juneau B-2 SW and SE Quadrangle
- USGS National Hydrography Dataset (2023)
- Aerial imagery (2023)
- Federal Emergency Management Agency Flood Insurance Rate Maps
- ADF&G Alaska Fish Resource Monitor (2023a)
- NRCS Web Soil Survey (NRCS 2021)
 - The NRCS has mapped approximately 309 acres of saline water and 22.2 acres of water within the study area while the remaining 363.9 acres have no digital data available (NRCS 2023).
- City and Borough of Juneau Wetlands Management Plan (2016)
- Geographic Information System (GIS) Mapping for Mendenhall Wetland State Game Refuge (Carstensen 2004)
- Juneau Douglas North Crossing PEL Study Wetlands and Waterways Data Summary (DOWL 2022).
- U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) (USFWS 2023). The NWI has mapped a total of 355.92 acres (51.18 percent) of wetlands within the study area (Appendix 1, Figure Set 2.1 to 2.7).
- Manual for Wetland Ecosystem Services Protocol for Southeast Alaska (Adamus 2015)
- Southeast Alaska GIS Library

Table 2: National Wetlands Inventory Mapped Wetlands and Waterbodies

Jurisdictional Type	Habitat Classification	Acres
	Palustrine Emergent	31.5
Motlende	Palustrine Scrub-shrub	2.4
Wetlands	Palustrine Forested	19.7
	Estuarine Intertidal	250.8
	Estuarine Subtidal	54.4
Waterbodies	Lacustrine Limnetic	0.7
	Riverine	2.4
Uplands	Non-Labeled Areas	N/A
Total		355.92 acres

2.2 Field Data Collection

2.2.1 Wetland Delineation Methods

DOWL Environmental Specialists Adam Morrill, PWS and Emily Anderson conducted the wetland delineation fieldwork on September 19th to September 22nd, 2023 in accordance with Part IV of the Corps of Engineers Wetlands Delineation Manual (USACE 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska Region [Version 2.0, (USACE 2007)].

Wetlands were classified and grouped according to guidelines outlined in the *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al. 1979). Sampling locations were selected to verify the preliminary mapping of proposed paired point locations. Data was collected using the three-parameter approach combining site-specific indicators of hydrophytic vegetation, hydric soils, and wetland hydrology. Field notes were taken to document landscape topography, stream crossings, and general site characteristics. Additionally, photo points were taken to document site conditions, confirm dominant plant species, extrapolate data to similar habitat areas, or to make a wetland/upland determination when soil excavation was not necessary.

At each sampling location, soil pits were excavated to a depth of at least 24 inches, or to the presence of a restrictive digging layer. Soil and hydrology characteristics of texture, color, saturation, and depth to water table were recorded on USACE Routine Wetland Determination forms (Appendix 2). Soil color was recorded using *Munsell Soil-Color Charts* (Munsell Color 2012). In the event soil excavation was not necessary to make a wetland/upland determination, a photographic point was taken. Data collected at test holes are prefixed with 'SP.' Photo point locations are prefixed with 'PP.' Wetland SPs were used to identify the HTL in the field, and aerial interpretation along with few PP to document tidally influenced wetlands.

A Global Positioning System unit with 30-foot accuracy was used to pinpoint sample locations and photo point locations for GIS mapping reference using ESRI FieldMaps while ArcGIS Pro

was used to calculate acreages. Final mapping was based on a combination of professional interpretation of aerial and site photos, topographic data, and field observations.

2.2.2 Functional Assessment Method

The Wetland Ecosystem Services Protocol for Southeast Alaska (WESPAK-SE) functional assessment provides a tool to evaluate wetland habitats. Wetland habitats are evaluated by assessment areas (AA), which combine wetlands habitats based on hydrogeomorphic class (i.e., depressional, riverine, flat, and slope). Each AA is evaluated based on data collected from field data (i.e., sampling points and photo points), GIS data (i.e., Anadromous Waters Catalog, National Hydrologic Database), and wetland mapping to fill out WESPAK-SE forms (Appendix 4). The WESPAK-SE forms categorize AAs into wetland categories (i.e., high functioning, low functioning) based on functional scores.

3.0 RESULTS

3.1 Data Summary

The 695.5-acre study area is comprised of approximately 29.3 acres (4.2 percent of the study area) of potentially jurisdictional wetlands and 346.4 acres of waterbodies (49.8 percent of the study area), and 319.8 acres of non-jurisdictional uplands (46 percent of the study area). Table 2 summarizes the results by Cowardin classification and all data sheets are included in Appendix 2 while the photo log is included in Appendix 3.

The following tables and sections describe vegetation, soils, and hydrology observations.

Table 3 Project Location, Wetlands, Waterbodies, and Uplands

Proposed Alignment	Habitat Type	Cowardin Classification	Acres	Data Points
		Palustrine Emergent	0.38	PP-22-24
	Wetland	Palustrine Scrub- Shrub	1.02	SP-7, 8
		Palustrine Forested	11.14	SP-1
		Estuarine Intertidal	16.18	PP-17, 18, 52
Mendenhall Peninsula		Estuarine Subtidal	16.17	PP-16
Mendennan i ennisara	Waterbodies	Marine	35.28	N/A
		Riverine	0.28	PP-14, 19, 57, 59, 60, 64
	Uplands	N/A	142.35	SP-2-6, 9-11, PP-1-13, 15, 20, 21, 53, 54-56, 58, 61-63
Sunny Point East	Wetland	Palustrine Emergent	0.71	N/A

Proposed Alignment	Habitat Type	Cowardin Classification	Acres	Data Points
		Palustrine Scrub- Shrub	4.71	SP-15
		Palustrine Forested	0.54	N/A
		Estuarine Intertidal	47.99	SP-12, PP-27, 44, 45
	Waterbodies	Riverine	0.76	PP-33-35
	Uplands	N/A	74.48	SP-13, 14, PP- 28-32, 36
		Palustrine Emergent	6.35	PP-42
	Wetland	Palustrine Scrub- Shrub	5.67	SP-15
	VVetiand	Palustrine Forested	0.54	N/A
Sunny Point West		Estuarine Intertidal	59.35	SP-12, PP-27, 44-46
	Waterbodies	Riverine	0.76	PP-33-35
	Upland	N/A	74.48	SP-13, 14, PP- 28-32, 36, 43, 47
	Wetland	Palustrine Emergent	1.36	N/A
		Palustrine Scrub- Shrub	0.64	N/A
		Estuarine Intertidal	73.86	PP-25, 26
Vanderbilt	Waterbodies	Estuarine Subtidal	1.79	N/A
		Lacustrine Limnetic	13.15	PP-41
		Lacustrine Littoral	0.36	N/A
		Riverine	4.42	PP-39
	Upland	N/A	33.12	PP-40
		Palustrine Emergent	0.45	N/A
	Wetland	Palustrine Scrub- Shrub	0.27	PP-48
		Estuarine Intertidal	49.48	N/A
Twin Lakes		Estuarine Subtidal	14.46	N/A
	Waterbodies	Lacustrine Limnetic	16.36	PP-41
	Trater Beares	Lacustrine Littoral	0.31	PP-48
		Riverine	0.22	N/A
	Uplands	N/A	27.77	N/A
		Palustrine Emergent	0.43	N/A
Salmon Creek	Wetlands	Palustrine Scrub- Shrub	0.36	N/A
		Palustrine Forested	0.17	N/A

Proposed Alignment	Habitat Type	Cowardin Classification	Acres	Data Points	
		Palustrine Unconsolidated Bottom	0.04	N/A	
		Estuarine Intertidal	11.19	PP-37, 38, 49, 50	
	\A/-4II	Estuarine Subtidal	14.89	N/A	
	Waterbodies	Riverine	1.26	N/A	
	Uplands	N/A	45.60	PP-51	
Total Study Area: 695.5 acres ²					

Notes:

N/A - Not Applicable

Table 4: Summary of Wetland Determination Form Data

ID	Hydrophytic Vegetation Present	Hydric Soils Present	Wetland Hydrology Present	Cowardin Type
SP-1	Yes	Yes	Yes	PFO4/SS1B
SP-2	No	No	Yes	Upland
SP-3	Yes	No	Yes	Upland
SP-4	Yes	No	No	Upland
SP-5	No	No	Yes	Upland
SP-6	No	No	No	Upland
SP-7	Yes	Yes	Yes	PSS1/EM1C
SP-8	Yes	Yes	Yes	PSS4/EM1B
SP-9	No	Yes	No	Upland
SP-10	No	Yes	Yes	Upland
SP-11	No	Yes	No	Upland
SP-12	Yes	Yes	Yes	E2EM1N
SP-13	No	No	No	Upland
SP-14	No	Yes	Yes	Upland
SP-15	Yes	Yes	Yes	PSS4/EM1B

Notes: Antecedent precipitation wetter than normal, so upland areas may observe positive wetland hydrology indicators.

E2EM1N: Estuarine intertidal emergent persistent regularly flooded

PFO4/SS1B: Palustrine forested needle-leaved evergreen/scrub-shrub broad-leaved deciduous saturated

PSS1/EM1C: Palustrine scrub-shrub broad-leaved/emergent persistent seasonally flooded

PSS4/EM1B: Palustrine scrub-shrub needle-leaved/emergent persistent saturated

² Sum of habitat acreages exceed the total area acreage due to overlap of footprint alignments with 150-foot buffer.

3.2 Hydrophytic Vegetation, Hydric Soils, and Hydrology

3.2.1 Vegetation

Hydrophytic vegetation was present in seven of fifteen test hole locations. All identified species and indicator status are shown by dominance test and/or prevalence on each data sheet in Appendix 2. The following dominant species were present (USACE 2020).

Table 5 Dominant Plant Species within the Study Area

Scientific Name	Indicator Status	Common Name
Alnus viridis	FAC	Sitka Alder
Andromeda polifolia	FACW	bog-rosemary
Athyrium cyclosorum	FAC	western lady fern
Carex livida	OBL	livid sedge
Carex lyngbyei	OBL	Lyngbye's Sedge
Carex pauciflora	OBL	few-flower sedge
Cornus canadensis	FAC	Canadian Bunchberry
Deschampsia caespitosa	FAC	tufted hair grass
Dryopteris expansa	FACU	spreading wood fern
Equisetum pratense	FACW	meadow horsetail
Gymnocarpium dryopteris	FACU	northern oak fern
Lysichiton americanus	OBL	yellow-skunk-cabbage
Menziesia ferruginea	FACU	fool's-huckleberry
Picea sitchensis	FACU	Sitka Spruce
Pinus contorta	FAC	lodgepole pine
Potentilla anserina	FACW	Silverweed
Rhododendron tomentosum	FACW	marsh Labrador-tea
Rubus idaeus	FACU	common red raspberry
Rubus pedatus	FAC	strawberry-leaf raspberry
Sambucus racemosa	FACU	red elder
Tsuga heterophylla	FAC	western hemlock
Tsuga mertensiana	FAC	mountain hemlock
Vaccinium ovalifoloim	FAC	oval-leaf blueberry

Notes: FAC = Facultative; FACU = Facultative Upland; FACW = Facultative Wetland; OBL = Obligate

3.2.2 Soils

Soils observed within the study area had anywhere from one to twenty-four inches of organic layer. During the four field days, Juneau Airport reported approximately 4.33 inches of precipitation. Table 6 describes observations made in the field.

Table 6: Soil Observations at Full Sample Point within the Study Area

ID	Organic Mat Thickness (inches)	Mineral Soil below Organic Layer	Saturated Organics	Hydric
SP-1	18	Loamy Clay	Yes	Yes
SP-2	2	Sandy Loam	No	No
SP-3	7	Sandy	No	No
SP-4	3	Loamy Clay	No	No
SP-5	1	Loamy Clay	No	No
SP-6	10	Loamy Clay	Yes	No
SP-7	24	None (Peat)	Yes	Yes
SP-8	25	None (Peat)	Yes	Yes
SP-9	24	None (Peat)	Yes	Yes
SP-10	10	Loamy Clay	No	Yes
SP-11	24	None (Peat)	Yes	Yes
SP-12	5	Sandy Loam	No	Yes
SP-13	9	Sandy Loam	No	No
SP-14	24	None (Peat)	Yes	Yes
SP-15	24	None (Peat)	Yes	Yes

Hydric soils were observed at nine out of the fifteen sample points. Over half of the sample points had Histolsol or a Histic Epipedon. Histolsol were the dominant hydric soil type and were observed at seven out of the fifteen sample points. The other hydric soils had either a histic epipedon or Alaska Redox.

3.2.3 Hydrology

Wetland hydrology was present at ten of the fifteen sample points. Due to the antecedent precipitation being wetter than normal it is anticipated positive wetland hydrologic indicators may be present in non-wetland areas. Of the ten test holes with positive wetland hydrologic indicators present, eight exhibited both primary hydrologic indicators of high-water table and saturation.

Wetter than normal climatic conditions occurred during the field investigation, with approximately 4.33 inches of precipitation. High water table was observed at five of the sample points, with groundwater depths between two to nine inches below the ground surface. Soil saturation was observed at nine of the fifteen sample points, with saturation depths between

zero and twelve inches below the surface (Appendix 2). Four of the nine sample points with had saturated soils non-hydrophytic vegetation and/or non-hydric soils, positive hydrology observation at these locations is likely due to wetter than normal antecedent precipitation conditions

Hydrology within estuarine habitats is influenced by tidal fluctuations, with areas either regularly or irregularly flooded or exposed. MHW and HTL data (USACE 2017) were used to determine water regime modifiers. Tidal areas above the MHW were considered *irregularly flooded* and below either *regularly flooded* or *irregularly exposed*.

3.3 Wetlands

Wetlands consist of areas meeting hydrophytic vegetation, hydric soils, and positive (i.e., primary and/or secondary indicators) wetland hydrology.

The study area spans Gastineau Channel, connecting Juneau area with Douglas Island. The HTL was used to demarcate the extent of estuarine and palustrine habitats. The study area above HTL (20.6 feet in elevation) typically rises quickly from the tidal flats into steep (i.e., 10 to 30 percent) slopes into upland areas (as high as 375 feet in elevation). Areas with zero to five percent slopes and near the toe of steep slopes contain wetlands or have developed bed and bank (i.e., stream) to convey surface water to Gastineau Channel.

3.3.1 Palustrine Emergent Wetland

Palustrine emergent persistent are depressional wetlands associated with nearly flat low areas located above the HTL within the study area. Palustrine emergent wetlands within the study area have a robust herbaceous layer typically over 30 percent aerial cover dominated by grasses and sedges.

Photo Set 1: Typical Palustrine Emergent Wetlands in the Study Area (SP-41, PP-47)

3.3.2 Palustrine Scrub-Shrub Wetland

Photo Set 2: Typical Scrub-shrub Wetlands in the Study Area (SP-8, SP-11)

Palustrine scrub-shrub habitats typically consist of wetlands with less than 30 percent tree cover with a robust shrub and herbaceous stratum typically over 30 percent. Scrub-shrub habitats within the study area are typically dominated by stunted Sitka Spruce (*Picea sitchensis*), Western Hemlock (*Tsuga heterophylla*), Fool's-Huckleberry (*Menziesia ferruginea*), and Ovalleaf Blueberry (*Vaccinium ovalifoloim*) or by stunted Lodgepole Pine (*Pinus contorta*). Soils in this habitat consisted of Histosols and had persistent soil saturation.

3.3.3 Palustrine Forested Wetland

Palustrine forested needle-leaved evergreen with broad-leaved scrub-shrub understory habitats are located in flat areas at the toe of slope typically within the forested Mendenhall Peninsula and outside of the tidally influenced areas of the Gastineau Channel. Hydrology of these wetlands consist of seasonally saturated soils. Vegetation is dominated by Sitka Spruce (*Picea sitchensis*) and Western Hemlock (*Tsuga heterophylla*).

Photo Set 3: Typical Forested Wetlands in the Study Area (SP-1)

3.3.4 Estuarine Intertidal

Estuarine intertidal habitats are tidal wetlands located above mean high water and is the dominant subsystem in the study area as the substrate is irregularly flooded by the tide. Much of this habitat above MHW is dominated by herbaceous vegetation and has visible flow patterns (e.g., grasses laying down in direction of surface flow).

Photo Set 4: Typical Estuarine Intertidal Irregularly Flooded Wetlands in the Study Area (SP-12, PP-52)

Estuarine intertidal habitats which are regularly flooded or irregularly exposed during tide cycle typically are unvegetated mudflats or rocky shorelines and are located below MHW.

Photo Set 5: Typical Estuarine Intertidal Irregularly Flooded or Exposed Wetlands in the Study Area (PP-16, PP-37)

3.4 Waterbodies

Waterbodies were identified by ordinary high-water mark through "physical characteristics such as a clear, natural line impressed on the bank, shelving, changes in the character of soil, destruction of terrestrial vegetation, the presence of litter and debris…" (33 CFR 328.3). Waterbodies located in the Study Area consist of upper perennial and lower perennial streams, and tidally influenced areas below the HTL. Waterbodies consist of estuarine, lacustrine, riverine, and marine habitats.

3.4.1 Estuarine Subtidal

Estuarine subtidal habitats are typically deep-water habitats partially enclosed by land with freshwater inputs such as the Mendenhall River and other stream tributaries. Estuarine subtidal habitats are areas mapped below the MHW. Ocean water is occasionally diluted with fresh water such as from Mendenhall River and other freshwater streams terminating within the Gastineau Channel. The study area's water regime which influences the estuarine is dominantly through the varying tidal levels with mean range of tide of 13.74 feet and highest astronomical tide of 20.65 feet (NOAA 2024).

Subtidal estuarine are permanently flooded areas at low tide.

Photo Set 6: Typical Estuarine Subtidal Wetlands in the Study Area (PP-37, PP-52)

3.4.2 Lacustrine

Lacustrine habitats are associated with a lake or other body of freshwater greater than 20 acres in size which is permanently flooded. The only lacustrine habitat encountered within the study area are Twin Lakes.

Photo Set 7: Typical Lacustrine Habitat in the Study Area (PP-41)

3.4.3 Riverine

Riverine habitats are associated with flowing water and mapped as waterways. Riverine habitats occur within tidally influenced environments and in localized channels which convey water off slopes. Streams which maintain bed and bank characteristics at low tide but are submerged at high tide are labeled R1. These streams were mapped starting at the HTL and

end at subtidal estuarine or marine habitats. Streams with low slope, perennial flow, and unconsolidated bottoms were labeled R2, extending from the HTL upstream. Intermittent steams consist of areas exhibiting bed and bank but lack perennial flow. These streams are labeled R4 and were identified by culverts, topography, and aerial interpretation.

Photo Set 8: Typical Riverine Habitat in the Study Area (R1: PP-39, R2: PP-34)

3.4.4 Marine

Marine habitats are exposed to the waves and currents of the open ocean. Marine habitats in the study area include subtidal deep-water habitats of Fritz Cove.

Photo Set 9: Typical Marine Habitat in the Study Area (PP-52 and a photo taken near North Douglas Boat Launch)

3.5 Uplands

Upland habitats within the study area are classified as areas lacking hydrophytic vegetation, hydric soils, and/or wetland hydrologic indicators. Upland habitats also consist of disturbed/built environment (e.g., roadways and built infrastructure). Vegetation in upland habitats is dominated by Western Hemlock (*Tsuga heterophylla*) and Sitka Spruce (*Picea sitchensis*) with an understory of Fool's Huckleberry (*Menziesia ferruginea*), Oval-leaf Blueberry (*Vaccinium ovalifoloim*), and Western Lady Fern (*Athyrium cyclosorum*). Upland habitats within roadway embankments are dominated by Bluejoint (*Calamagrostis canadensis*), Cow Parsnip (*Heracleum maximum*), Narrow-Leaf Fireweed (*Chamaenerion angustifolium*), and Sitka Alder (*Alnus viridis*). Soils consist of an organic layer typically between two and ten inches and are underlain by sandy loam or loamy mineral soil. This habitat typically lacked primary wetland hydrologic indicators. However, due to the heavy amount of precipitation within the week preceding fieldwork some areas were observed with pockets of surface inundation or saturated soils. Areas with primary wetland hydrologic indicators typically lacked hydrophytic vegetation and hydric soils.

Photo Set 10: Typical Upland Habitats in the Study Area, (SP-5, SP-6)

4.0 FUNCTIONAL ASSESSMENT

The proposed project consists of fourteen (Appendix 1, Figure 4) AAs distinguished by location, topography, tidal influence, and infrastructure barriers. WESPAK-SE analyzes tidal and non-tidal habitats separately based on function and value attributes. Scores from WESPAK-SE are normalized by comparing tidal or non-tidal AAs scores with 55 tidal reference wetlands or 119 non-tidal reference wetlands, respectively. Analysis used either the tidal WESPAK-SE calculator for AAs within Gastineau Channel (Mendenhall Bar) or Fritz Cove, or non-tidal WESPAK-SE calculator for AAs located inland from the HTL (Appendix 4).

The following data sources were used to derive at the WESPAK-SE overall scores and to determine which tidally influenced AA's may have experienced potential stressor such as the

construction of Egan Drive in the mid-1970s (AA9, AA10, AA11) or construction of facilities creating the wetland (AA13).

- Field data, photographs, and notes
- USGS Juneau B-2 SW Historical Topographic Map (USGS 1947)
- Southeast Alaska GIS Library
- Various federal, state, and local databases (e.g., ADF&G Alaska Fish Resource Monitor)
- Manual for Wetland Ecosystem Services Protocol for Southeast Alaska (Adamus 2015)

Table 7 summarizes the ratings for the tidal and non-tidal AAs.

Table 7: WESPAK-SE Function and Value Groups Tidal or Non-Tidal, Rated as High, Overall AA Score, and Rating

AA	Alignment(s)³	AA Acreage	Tidal or Non- tidal	Overall Score	Rating	Group Rating of Higher
1	Mendenhall Peninsula	11.14	Non- tidal	6.26	Higher	Fish and Terrestrial Habitat
2		1.02	Non- tidal	7.56	Higher	Hydrologic, Water Quality, and Terrestrial Habitat
3		0.38	Non- tidal	4.18	Moderate	Terrestrial Habitat
4		67.63	Tidal	2.51	Low	Anadromous Fish Habitat, Waterbird Feeding Habitat, Songbird, Raptor, & Mammal Habitat, and Native Plant Habitat
5	Sunny Point West	3.76	Non- tidal	6.26	Higher	Fish and Aquatic Habitat
6	Sunny Point East	0.25	Non- tidal	6.23	Higher	Hydrologic, Fish, and Aquatic Habitat
7	Sunny Point West and Sunny Point	90.69	Tidal	6.64	Higher	Sediment Retention & Stabilization and Waterbird Feeding Habitat
8	East	5.08	Non- tidal	3.35	Moderate	None
9	Vanderbilt	16.35	Tidal	5.54	Moderate	Anadromous Fish Habitat and Waterbird Feeding Habitat
10		58.17	Tidal	5.28	Moderate	Anadromous Fish Habitat, Waterbird Feeding Habitat
11		30.78	Non- tidal	8.08	Higher	Water Quality, Fish, Aquatic Habitat, and Social
12	Twin Lakes	61.4	Tidal	6.97	Higher	Carbon Sequestration, Organic Nutrient Export, Waterbird Feeding Habitat, and Songbird, Raptor, & Mammal Habitat
13	Salmon Creek	0.04	Non- tidal	6.22	Moderate	Social
14		22.0	Tidal	6.73	Higher	Waterbird Feeding Habitat

4.1 WESPAK-SE

The overall score and rating for AAs are based on the WESPAK-SE calculation spreadsheets of functions and values performed by the AA. Data entered into WESPAK-SE spreadsheets are normalized to proportionally rank each AA by comparing minimum, median, and maximum scores of previously assessed wetlands.

4.1.1 Mendenhall Peninsula

AA1 consists of 11.14 acres of non-tidal wetlands located at the base of a steep slope within the Mendenhall Peninsula. The dominant wetland habitats in AA1 consists of FO⁴ with an understory of SS⁵. The overall score for AA1 is 6.26 with a rating of Higher. AA1 consists of wetlands considered to provide important values for fish and terrestrial habitat.

AA2 consists of 1.02 acres of non-tidal wetlands found at the change in slope (e.g., bench) within the Mendenhall Peninsula. The dominant wetland habitats in AA2 consists of SS with an understory of EM⁶. The overall score for AA2 is 7.56 with a rating of Higher. AA2 consists of wetlands considered to provide important values for hydrologic functions, water quality, and terrestrial habitat.

AA3 consists of 0.38 acres of non-tidal wetlands found at the toe of a steep slope near the Mendenhall Peninsula, approximately 400 feet from Fritz Cove. This wetland consists of EM habitat. The overall score for AA3 is 4.18 with a rating of Moderate. AA3 consists of wetlands considered to provide important values for terrestrial habitat.

AA4 consists of 67.63 acres of tidally influenced wetlands found in marine and intertidal waterbodies of Fritz Cove, north of the Mendenhall Peninsula to Douglas Island. US⁷ is the dominant habitat type within this AA at 52 percent, followed by UB⁸ at 24 percent. The overall score for AA4 is 2.51 with a rating of Low. AA4 consists of wetlands considered to provide important values for anadromous fish habitat, waterbird feeding habitat, songbird, raptor, & mammal habitat, and native plant habitat.

4.1.2 Sunny Point West

AA5 consists of 3.76 acres of non-tidal wetlands found between Egan Drive and the Glacier Highway. EM is the dominant habitat type within this AA at 81 percent, followed by SS at 19 percent. The overall score for AA5 is 6.26 with a rating of Higher. AA5 consists of wetlands considered to provide important values for hydrologic functions, fish habitat, and aquatic habitat.

⁴ FO=Forested

⁵ SS=Scrub-shrub

⁶ EM=Emergent

⁷ US=Unconsolidated shore

⁸ UB=Unconsolidated bottom

4.1.3 Sunny Point East

AA6 consists of 0.25 acres of non-tidal wetlands north of the intersection of Egan Drive and Glacier Highway Access Road (CBJ 2021). EM is the dominant habitat type within this AA at 85 percent, followed by SS at 19 percent. The overall score for AA6 is 6.23 with a rating of Higher. AA6 consists of wetlands considered to provide important values for hydrologic function, fish habitat, and aquatic habitat.

4.1.4 Sunny Point East and West

AA7 consists of 90.69 acres of tidally influenced wetlands found on the east and west side of Sunny Point, across Gastineau Channel to Douglas Island. EM is the dominant habitat type within this AA at 83 percent, followed by SB⁹ at six percent. The overall score for AA7 is 6.64 with a rating of Higher. AA7 consists of wetlands considered to provide important values for sediment retention and stabilization and waterbird feeding habitat.

AA8 consists of 5.08 acres of non-tidal wetlands found on the Douglas Island side of Sunny Point, north of the Douglas Highway. SS is the dominant habitat type within this AA at 89 percent, followed by FO at 11 percent. The overall score for AA8 is 3.35 with a rating of Moderate.

4.1.5 Vanderbilt

AA9 consists of 16.35 acres of non-tidal wetlands found north of Egan Drive from Vanderbilt Hill Road to slightly past Lemon Creek. EM is the dominant habitat type within this AA at 97 percent. The overall score for AA9 is 5.54 with a rating of Moderate. AA9 consists of wetlands considered to provide important values for anadromous fish habitat and waterbird feeding habitat.

AA10 consists of 58.17 acres of intertidal wetlands found south of Egan Drive from Lemon Creek to just past Vanderbilt Hill Road until meeting Douglas Island across the Gastineau Channel. EM is the dominant habitat type within this AA at 44 percent, followed by US at 43 percent. The overall score for AA10 is 5.28 with a rating of Moderate. AA10 consists of wetlands considered to provide important values for anadromous fish habitat and waterbird feeding habitat.

4.1.6 Twin Lakes

AA11 consists of 30.78 acres of non-tidal littoral wetlands found south of Vanderbilt Hill Road, along Egan Drive to the intersection of Glacier Highway, consisting of Twin Lakes. UB is the dominant habitat type within this AA at 88 percent, followed by EM at six percent. The overall score for AA11 is 8.08 with a rating of Higher. AA11 consists of wetlands considered to provide important values for water quality, fish, aquatic habitat, and social groups.

⁹ SB=Streambed

AA12 consists of 61.4 acres of subtidal and intertidal wetlands found south of Egan Drive between Twin Lakes to Douglas Island. Intertidal US is the dominant habitat type within this AA at 55 percent, followed by subtidal UB at 23 percent. The overall score for AA12 is 6.97 with a rating of Higher. AA12 consists of wetlands considered to provide important values for carbon sequestration, organic nutrient export, waterbird feeding habitat, and songbird, raptor, & mammal habitat.

4.1.7 Salmon Creek

AA13 consists of 0.04 acres non-tidal wetlands found at the Douglas Island Pink and Chum hatchery¹⁰. UB is the dominant habitat type within this AA at 100 percent. The overall score for AA13 is 6.22 with a rating of Moderate. AA13 consists of wetlands considered to provide important values for social groups.

AA14 consists of 22 acres of subtidal and intertidal wetlands found at the Salmon Creek dock to Falls Creek on Douglas Island. UB is the dominant habitat type within this AA at 68 percent, followed by US at 20 percent. The overall score for AA14 is 6.73 with a rating of Higher. AA14 consists of wetlands considered to provide important values for waterbird feeding habitat.

5.0 DISCUSSION

The study area mainly consists of areas influenced by the tide (approximately 360 acres) and extends typically 160 feet above HTL, except for on Mendenhall Peninsula where elevations extend up to 375 feet. Steep slopes typically end near Egan Drive or Douglas Highway, where the land flattens out into the tidal flats.

Palustrine wetland habitats within the study area typically connect into a perennial stream and flow into Gastineau Channel or Fritz Cove. There are two wetlands on Mendenhall Peninsula located south of Engineers Cutoff Road which appear to not be connected to a perennial stream and potentially are isolated, totaling approximately 1.4 acres.

6.0 REFERENCES

Adamus, P.R. 2015. Manual for Wetland Ecosystem Services Protocol for Southeast Alaska (WESPAK-SE).

ADF&G. 2023a. *Alaska Fish Resource Monitor*. https://adfg.maps.arcgis.com/apps/MapSeries/index.html?appid=a05883caa7ef4f7ba17c 99274f2c198f

ADF&G. 2023b. *Mendenhall Wetlands – State Game Refuge*. https://www.adfg.alaska.gov/index.cfm?adfg=mendenhallwetlands.main

¹⁰ Douglas Island Pink and Chum, Inc. Accessed February 2024. https://www.dipac.net/

- Bosworth Botanical Consulting. April 2016. *City and Borough of Juneau Wetlands Management Plan. Final Report, Volume One.* https://juneau.org/wp-content/uploads/2019/02/JWMPVolume1FinalApril2016.pdf
- CBJ. 2021. City & Borough of Juneau Street & Property Atlas. https://juneau.org/index.php?gf-download=2021%2F04%2FCURRENT-STREET-ATLAS.pdf&form-id=106&field-id=4&hash=c077378deffdf2c43001d39aa0f18c13743b863245cc08228106a1714fdbc3e2
- Code of Federal Regulations. 1986. *Part 328 Definition of Waters of the United States*. https://www.ecfr.gov/current/title-33/chapter-II/part-328
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitat of the United States.* Jamestown: US Department of the Interior.
- DOWL. 2022a. Wetlands and Waterways Data Summary, Juneau Douglas North Crossing PEL Study.
- DOWL. 2022b. Navigable Waterways Technical Memorandum, Juneau Douglas North Crossing PEL Study.
- Gallant, A.L., E.F. Binnian, J.M. Omernik, and M.B. Shasby. 1995. *Ecoregions of Alaska*. USGS Professional Paper, Washington: United States Printing Office.
- Munsell Color. 2012. *Munsell Soil-Color Charts with genuine Munsell color chips.* Grand Rapids: Munsell Colot.
- NRCS. 2015. *Part 650 Engineering Field Handbook.* Guidance for Documenting Wetland Hydrology, United States Department of Agriculture.
- NRCS. 2021. Web Soil Survey. Accessed September 30, 2023. https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.
- NRCS. 2005. Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin.
- Pojar, A., and A. Mackinnon. 2004. Plants of the Pacific Northwest Coast. Vancouver, BC: Lone Pine.
- Pratt, V.E. 1989. Field Guide to Alaskan Wildflowers. Anchorage, AK: Alaskakrafts.
- Tande, G., and R. Lipkin. 2003. Wetland Sedges of Alaska. Anchorage, AK: University of Alaska Anchorage, Environmental and Natural Resources Institute, Alaska Natural Hertiage Program.
- USFWS. 2023. *National Wetlands Inventory Mapper.* https://www.fws.gov/wetlands/data/Mapper.html.
- USGS. 1947. Juneau B-2, AK. https://ngmdb.usgs.gov/topoview/viewer/#14/58.3524/-134.5196
- USGS. 2023. The National Map. https://apps.nationalmap.gov/viewer/

- USACE. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, Washington D.C.: Wetlands Research Program.
- USACE. 2007. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska Region (Version 2.0). ERDC/EL TR-07-24, Washington D.C.: Wetlands Regulatory Assistance Program.
- USACE. 2020. "Alaska Subregional Wetland Plant List."
- USACE. 2023. The Antecedent Precipitation Tool. Juneau, Alaska. September 30, 2023.
- Utah Climate Center. 2023. *Juneau International Airport (USW00025309)*. Logan: Utah State University.
- Vierick, L.A., and Little E.L. 2007. *Alaska Trees and Shrubs*. Fairbanks, Alaska: University of Alaska Press.
- Vierick, L.A., C.T. Dyrness, A.R. Batten, and KJ. Wenzlick. 1992. *The Alaska Vegetation Classification*. Gen. Tech. Rep. PNW-GTR-286, Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

Juneau Douglas North Crossing PEL Study Bird and Habitat Surveys Report

Prepared for Alaska Department of Transportation and Public Facilities

January 2024

Citation

Parametrix. 2024. Juneau Douglas North Crossing PEL Study Bird and Habitat Surveys Report. Prepared for Alaska Department of Transportation and Public Facilities by Parametrix, Seattle, Washington. January 2024.

Contents

	IIIII	roqucuon						
2.	Me	Methods						
3.	Res	Results						
	3.1	L Habitat Evaluations	7					
	3.2	2 Bird/Habitat Interactions	18					
4.	Red	Recommendations/Additional Information Needs						
5.	Ref	ferences	20					
FIG	iURE	ES CONTRACTOR OF THE PROPERTY						
Fig	ure	Study Area and Preliminary Alternatives	2					
Fig	ure :	2. Bird Survey Areas and Habitat Types	4					
TAI	BLES	S S						
Tal	ole 1	1. Distribution of Habitat Types in Survey Areas (acres)	6					
Tal		2: Acreage of Habitat Types in the Potential Impact Footprints of the Alternative gnments	6					
ΑТ	ΓACH	HMENTS						
	1.	Draft Work Plan for Bird and Upland Habitat Surveys						
	2.	eBird Sighting Frequency Data for the Mendenhall Wetlands Important Birding Area						
	3.	Site Visit Summaries						
	4.	Revisions to Preliminary Habitat Type Mapping from the Wildlife and Fish Resources						

Technical Memorandum

5. Common and Scientific Names of Species Mentioned in this Report

Acronyms and Abbreviations

CBJ City and Borough of Juneau

DOT&PF Alaska Department of Transportation and Public

GIS Facilities geographic information system

NEPA National Environmental Policy Act

PEL Planning and Environmental Linkages

1. Introduction

The City and Borough of Juneau (CBJ) has partnered with Alaska Department of Transportation and Public Facilities (DOT&PF) to study a possible transportation corridor to connect Juneau with the northern end of Douglas Island. DOT&PF has chosen the Planning and Environmental Linkages (PEL) process to identify and evaluate a purpose and need and recommend alternatives for such a connection. The PEL study considers potential crossing locations between Douglas Island and mainland Juneau in the channel area north of the existing Douglas Island Bridge. The analyses conducted for the PEL may be incorporated into a future National Environmental Policy Act (NEPA) review.

In April 2023, DOT&PF identified six alternatives to advance for detailed development in the Juneau Douglas North Crossing PEL Study (Figure 1). To support further evaluation of these alternatives, the project team performed field surveys to expand our understanding of environmental resources potentially affected by each alternative. This report identifies the goals and objectives of the field survey effort for birds and upland habitats, describes the methodology employed, summarizes the findings of the field surveys, and provides recommendations for refining the data that will support future evaluations.

A substantial amount of information about species and habitats in the study area is available from the sources identified in Section 2 (Methods) of this report. The goal of this field survey effort was to supplement that information with observations of (1) bird species in the study area during the fall migration period and (2) bird use of the habitat types that have been identified in the study area. To accomplish that goal, the field survey effort included the following tasks:

- Refining our understanding of the habitat types in the study area by collecting observations of the structural and vegetative composition of the land cover types that were defined and mapped in the Wildlife and Fish Resources Technical Memorandum for the Juneau Douglas North Crossing PEL Study.
- Conducting area-search surveys to document bird species and characterize the interactions of birds with different habitat types.

2. Methods

In September 2023, DOT&PF shared a draft work plan with the Technical Advisory Committee and the Stakeholder Advisory Committee for the Juneau Douglas North Crossing PEL Study (Attachment 1). The field study team revised the work plan in response to review comments from committee members. The methodology described in this report incorporates those revisions.

Preliminary Research: Before beginning fieldwork, biologists reviewed aerial imagery, bird species lists, observation records, and additional information from multiple resources, including:

- Wildlife and Fish Resources Technical Memorandum for the Juneau Douglas North Crossing PEL Study (Parametrix 2022).
- Juneau Audubon Society (http://www.juneau-audubon-society.org/).
- Alaska Audubon Society (https://ak.audubon.org/southeast-alaska-birding-trail/juneau).
- eBird (https://ebird.org/hotspots).
- Alaska Department of Fish and Game (https://www.adfg.alaska.gov/index.cfm?adfg=animals.listbirds).
- Hotspots: Bird Survey of Mendenhall Wetlands, April 2002 to May 2003 (Armstrong et al. 2004).

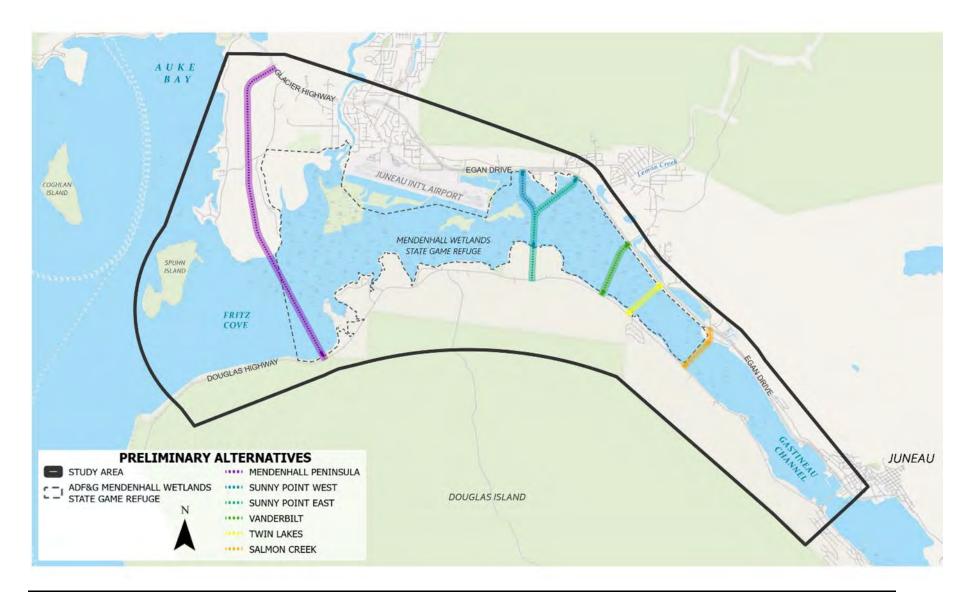


Figure 1. Study Area and Preliminary Alternatives

2 January 2024 | 554-6295-005

- The Mendenhall Wetlands: A Globally Recognized Important Bird Area (Armstrong et al. 2009).
- Juneau Second Channel Crossing Project Development Summary Report (HDR Alaska, Inc. 2005).
- Bird use of the Mendenhall Wetlands in Juneau, Alaska (Cain et al. 1988).
- Juneau International Airport. Final EIS and Section 4(f) Evaluation (FAA & CBJ 2007).

To gain insight about species likely to be encountered, the biologists compiled and reviewed sighting frequency data from eBird (2023) for bird species that have been observed in the Mendenhall Wetlands Important Birding Area during the months of September and October (Attachment 2).

Study Area: The study area for habitat evaluations and bird surveys consisted of the PEL study area, as described in the *Wildlife and Fish Resources Technical Memorandum* (Parametrix 2022). Biologists identified 13 locations for habitat evaluations and area-search surveys (Figure 2). These locations were based on proximity to the alternative alignments under review, proximity to known birding hot spots, accessibility, and opportunities to conduct surveys in a variety of habitat types.

Equipment: Biologists used a tablet computer with the ArcGIS Field Map application to record field observations (e.g., photograph locations, adjustments to previously mapped cover type boundaries). The tablet was linked to a Trimble DA2 Catalyst Global Navigation Satellite System GPS receiver with submeter accuracy. For personal safety, crew members wore high-visibility field vests during surveys.

Habitat Evaluations: Biologists collected data to characterize each of the nine land cover types identified in the Wildlife and Fish Resources Technical Memorandum, taking representative photographs and identifying characteristic plant species. Biologists performing field surveys gained access to the study areas via public lands (typically Mendenhall Wetland State Game Refuge access points and CBJ- or State-owned parcels). As discussed below, observations made during the field surveys resulted in the classification of a 10th land cover type, Bog/Fen. Data collected in each land cover type included plant species, structural characteristics, habitat quality, land use, and interactions of birds with habitat features. While collecting habitat evaluation data, biologists also confirmed and corrected cover type classifications and boundaries, as needed. Biologists also recorded incidental observations of non-avian taxa and evidence of their presence (e.g., mammal tracks and scat).

Area-Search Surveys: Two biologists conducted area-search surveys, walking through the survey areas and stopping at various points to observe bird activity. The entirety of the survey area polygons identified on Figure 2 were surveyed by walking through vegetation or viewing open areas with binoculars. A single, 1- to 3-hour survey visit was conducted in each survey area. The biologists identified. estimated the abundance of, and collected information about habitat use by the bird species observed. In accordance with methodologies developed for bird surveys during migratory periods (e.g., Alberta Environment and Parks 2020), most surveys were conducted during the morning and evening hours. This approach allowed the collection of data on a wider array of species than would be present during just one of these time periods, because different species are active at different times of the day. The morning surveys tend to capture nocturnal migrants landing after nighttime flights and diurnal migrants beginning migration in the daylight hours. The evening surveys tend to capture soaring migrants using thermals, waterfowl during foraging flights, and nocturnal migrants beginning nighttime flights (Alberta Environment and Parks 2020). These morning and evening periods also aligned with low tides, when the maximum amount of habitat was available to birds and surveyors in each survey area. Surveys were not conducted during periods of strong wind or heavy rain. Biologists also timed survey visits to avoid being in popular hunting areas under twilight conditions.



Figure 2. Bird Survey Areas and Habitat Types

January 2024 | 554-6295-005

To maximize opportunities for collecting observations of the interactions of birds with different habitat types, the survey areas encompassed a variety of land cover types. When identifying target areas for surveys, areas near the alternative alignments were favored, but the alternative locations were not the primary driver for determining the locations of survey areas. Part of the purpose in favoring those locations was to gain on-the-ground familiarity with each alternative alignment, facilitating future evaluations of the potential impacts of the alternatives.

3. Results

Parametrix biologists Mike Hall and Kaylee Moser conducted the field surveys from September 19 through September 28, 2023. Weather during the surveys was generally overcast and mild (45°F to 55°F) with periods of light rain and sunshine. See Attachment 3 for site visit summaries.

The biologists conducted surveys in 13 survey areas encompassing a total of 1,825 acres across 10 different habitat types (Table 1). Preliminary identification of habitat types in the study area was based on mapping developed for the *Wildlife and Fish Resources Technical Memorandum* (Parametrix 2022). During the surveys, biologists made pertinent alterations to the habitat type mapping based on field observations. The alterations consisted of boundary adjustments and habitat type reclassification, reflecting differences between remote sensing data and on-the-ground conditions.

Figure 2 displays the survey areas and mapped habitat types. Habitat type mapping in Figure 2 reflects the changes made by biologists during field surveys. Attachment 4 shows specific revisions informed by the field surveys.

Three habitat types (Unvegetated Intertidal, Intertidal Marsh, and Open Water) made up more than half of the area surveyed. This reflects the predominance of these habitat types in the areas that were emphasized for field review, combined with the ability of surveyors to detect birds at great distances in these open areas (sight distance was a factor in determining the size and shape of each survey area). Table 1 below provides the breakdown of the acreage of survey areas for each of the 10 habitat types. Table 2 summarizes the acreage of the habitat types within the potential impact footprint that has been defined for each alternative alignment.

In the course of conducting habitat evaluations, biologists observed some areas with distinctive features (e.g., stunted trees, a thick layer of *Sphaghum* mosses, certain plant species) characteristic of bogs and/or fens. Most such areas were preliminarily classified as Freshwater Emergent Wetland or Scrub-Shrub Wetland in the 2022 *Wildlife and Fish Resources Technical Memorandum*. Given the unique value of bog and fen habitats, the biologists recognized the importance of classifying Bog/Fen as a separate habitat type. Bogs support specialized flora and fauna adapted to acidic water, low available nutrients, and water-logged conditions. Fens are typically less acidic and more productive and biologically diverse than bogs. Both bogs and fens store large amounts of carbon in deep peat layers and play a beneficial role in regulating the global climate (ADF&G 2015).

Through further analysis, the biologists determined that the locations of the Bog/Fen areas identified in the field corresponded with the locations of polygons classified as "muskeg" in geographic information system (GIS) data (the Forest Productivity data layer) obtained from the Tongass National Forest. This information, combined with the distinctive visual signature of these areas in aerial imagery, allowed biologists and GIS specialists to reclassify several habitat polygons in the study area as Bog/Fen.

¹ Although "muskeg" is commonly used in Southeast Alaska to refer to Sphagnum moss- or sedge-dominated peatlands, the word has fallen out of widespread use in technical literature and has been replaced by more narrowly defined terms, such as "bog" or "fen" (Carstensen 2013).

Table 1. Distribution of Habitat Types in Survey Areas (acres)

_	Habitat Type									
Survey Area	Open Water	Unvegetated Intertidal	Intertidal Marsh	Coastal Meadow	Freshwater Emergent Wetland	Scrub- Shrub Wetland	Forested Wetland	Bog/Fen	Conifer Forest	Disturbed
A1	42	96	5	1		-			12	
A2	45	20	7						4	
A3	79	124	38	8	10		7	<0.5	15	
A4	50	50	153		6					6
A5		78	132	8	16	2			5	2
A61							2	1	1	<0.5
A7	4	39	53	1					3	<0.5
A6/A8 ¹	39	139	48				-	6	15	
A9	6	122	51	1						3
A10	41	71	4			1				5
A11			10						1	
A12	66	48	1							
A13	21									1
TOTAL	393	787	502	19	32	3	9	7	56	17

Note: The area calculations for each survey area include portions that overlap neighboring survey areas.

Table 2: Distribution of Habitat Types Areas within the Potential Impact Footprints of the Alignments (acres)

	Habitat Type									
Alternative Alignment	Open Water	Unvegetated Intertidal	Intertidal Marsh	Coastal Meadow	Freshwater Emergent Wetland	Scrub- Shrub Wetland	Forested Wetland	Bog/Fen	Conifer Forest	Disturbed
Mendenhall Peninsula	6	7	1			1	6		34	7
Salmon Creek	2	6	<0.5	<0.5	-	<0.5	-	-	1	18
Sunny Point East		3	5		<0.5	<0.5	-	2	4	2
Sunny Point West		2	6	7	11	1	-	2	4	20
Twin Lakes	<0.5	20	9	5		-	-		2	15
Vanderbilt	7	11	12	8		-			1	17
TOTAL	15	49	33	20	11	2	6	4	46	79

¹ The acreage values for survey area A6 represent only a small area near N Douglas Highway. Survey area A6/A8 covers the intertidal areas along the north shore of Douglas Island, extending from the Sunny Point alignment to the Vanderbilt alignment.

3.1 Habitat Evaluations

On the following pages are profiles that provide overviews of the 10 habitat types in the study area. Each habitat profile includes a representative photograph, a brief description, characteristic plant species, and bird species observed in the habitat type during the September 2023 area-search surveys. These profiles build on and supplement existing reports (e.g., HDR Alaska, Inc. 2005) and species lists (e.g., eBird, Alaska Audubon Society, Juneau Audubon Society, Armstrong et al. 2004). See Attachment 5 for the scientific names of species mentioned in this report.

Habitat Profile: Open Water

Gastineau Channel near Survey Area A9, facing west.

Description	These areas in the subtidal zone are permanently inundated—generally, below the mean lower low water elevation—and include the deeper waters of Gastineau Channel, Fritz Cove, river outlets, and ponds/lakes.				
Characteristic Plant Species	Submerged aquatic vegetation (e.g., eelgrass, macroalgae)				
Bird Species Observed	American wigeon California gull Canada goose glaucous-winged gull green-winged teal	herring gull hooded merganser horned grebe lesser scaup mallard	short-billed gull northern pintail red-necked grebe ring-necked duck		

Habitat Profile: Unvegetated Intertidal

Gastineau Channel at low tide in Survey Area A8, facing northwest.

Description	These areas regularly alternate between being inundated and exposed by tidal fluctuations. Biota include nonvascular plants, mollusks, crustaceans, and polychaete worms. Fish and other aquatic species are present when inundation occurs. Sparse low marsh vegetation may be present in some areas.				
Characteristic Plant Species	Rockweed Various green algae species Sparse coverage of goosetongue, sea milkwort, and Pacific alkali grass				
Bird Species Observed	American crow American pipit American wigeon bald eagle Bonaparte's gull California gull	glaucous-winged gull greater yellowlegs green-winged teal herring gull least sandpiper lesser yellowlegs	mallard merlin short-billed gull pectoral sandpiper western sandpiper		

Habitat Profile: Intertidal Marsh

Intertidal marsh habitat north of Hendrickson Point in Survey Area A8, facing northwest.

These areas are largely restricted to elevational zones between areas where the Unvegetated Intertidal and Coastal Meadow habitat types are found. Estuarine areas sheltered from wave energy provide optimal conditions for bird nesting and foraging, as these areas have a reduced threat of wave washout. Lower elevations with relatively coarse substrates commonly feature succulent vascular plants such as goosetongue and arrowgrass. Terraces near tidal sloughs support dense stands of Lyngbye's sedge.

Characteristic Plant Species

Lyngbye's sedge arrowgrass beach rye Canadian sandspurry Gmelin's saltweed goosetongue low chickweed Pacific alkali grass sea milkwort seabeach sandwort seablite silverweed

Bird Species Observed

American crow American dipper American pipit bald eagle Canada goose common raven golden-crowned sparrow green-winged teal herring gull Lincoln's sparrow merlin

Northern harrier

Pacific wren red-winged blackbird Savannah sparrow song sparrow white-crowned sparrow Wilson's snipe

Habitat Profile: Coastal Meadow

Coastal Meadow habitat on the fringe of a dredge spoils island in Survey Area A5, facing northwest.

Description	These areas are typically found in areas that were previously tidelands but that are now above the high tide line due to post-glacial rebound (i.e., uplift following the removal of the huge weight of ice sheets during the last glacial period). Dominant vegetation consists of grasses and other herbaceous plants.				
Characteristic Plant Species	beach rye beach pea cow parsnip fireweed	foxtail barley hemlock parsley kneeling angelica Lyngbye's sedge	Nootka lupine red fescue tufted hairgrass yarrow		
Bird Species Observed	American robin belted kingfisher common yellowthroat	Lincoln's sparrow Pacific wren red-winged blackbird	Savannah sparrow song sparrow white-crowned sparrow		

January 2024 | 554-6295-005

Habitat Profile: Freshwater Emergent Wetland

Freshwater emergent wetland located near West Creek in Survey Area A5, facing north.

Description	These grass- and sedge-dominated areas are generally found on riverine terraces and along the edges of ponds. They are occasionally flooded by seawater during storm surges.					
Characteristic Plant Species	bluejoint reedgrass cleavers Douglas' water-hemlock Lyngbye's sedge	marsh cinquefoil Northern grass-of- Parnassus Pacific water-parsley	sweet gale tufted hairgrass yellow marsh-marigold			
Bird Species Observed	great blue heron	spotted sandpiper				

Habitat Profile: Scrub-Shrub Wetland

Scrub-shrub wetland habitat west of Sunny Point in Survey Area A5, facing south.

Description	These areas are dominated by shrubs and sapling trees, generally along permanent streams. At many sites, this habitat type is a transition zone between freshwater marshes and wooded plant communities.					
Characteristic Plant Species	Barclay willow black cottonwood	Sitka alder	Sitka willow			
Bird Species Observed	American crow common raven common yellowthroat Lincoln's sparrow	merlin orange-crowned warbler Pacific wren	ruby-crowned kinglet song sparrow Steller's jay yellow warbler			

Habitat Profile: Forested Wetland

Forested wetland directly north of North Douglas Highway in Survey Area A6, facing north.

Description	These areas are generally found on steeper terrain than other wetland types in the study area, primarily near small drainages on the flatter parts of Douglas Island. Conifer species characterize these wetlands as the dominant species, although the trees may be stunted compared to trees found in areas with better-drained soils.				
Characteristic Plant Species	fool's huckleberry oval-leaf blueberry	Sitka spruce Shore pine western hemlock	western redcedar yellow skunk cabbage		
Bird Species Observed	American robin belted kingfisher	common raven	Pacific wren		

Habitat Profile: Bog/Fen

Bog/Fen habitat located on Hendrickson Point in Survey Area A8, facing northeast.

Description	These areas are generally found in areas away from tidal influence, interspersed throughout the forest. Dominant plant species are sphagnum mosses (in bogs), and sedges (in fens), along with stunted trees, low shrubs, and forbs.				
Characteristic Plant Species	bog cranberry bog rosemary crowberry Labrador tea	lingonberry fewflower sedge shore pine	sphagnum moss tall cottongrass tufted clubrush		
Bird Species Observed	common raven				

Habitat Profile: Conifer Forest

Conifer forest growing on a dredge spoils island in Survey Area A5, facing west.

Description	This is the most common upland habitat type in the study area. The dominant tree species are Sitka spruce and western hemlock, typical of low-to mid-elevation areas in Southeast Alaska. Patches of young forest have become established on the small islands created from dredging Gastineau Channel.				
Characteristic Plant Species	bunchberry devil's club fool's huckleberry	fernleaf goldthread five-leaf bramble lady fern	oval-leaved blueberry Sitka spruce western hemlock		
Bird Species Observed	American robin bald eagle black-billed magpie belted kingfisher chestnut-backed chickadee common raven	dark-eyed junco Eurasian collared-dove golden-crowned sparrow Lincoln's sparrow orange-crowned warbler Pacific wren	sharp-shinned hawk song sparrow Steller's jay ruby-crowned kinglet white-crowned sparrow varied thrush		

Habitat Profile: Disturbed

Riprap bank armoring along Gastineau Channel in Survey Area A9, facing south.

Description	These areas are defined by past and ongoing human activities. Vegetation may include plant communities that colonize areas immediately after disturbance or species directly introduced by grass seeding and planting shrubs and trees. Areas classified as Disturbed include roads, residential and commercial development, industrial buildings, hatcheries, communication towers, power lines, and riprap armoring along Egan Drive.				
Characteristic Plant Species	beach rye fireweed	pasture grasses mosses	Sitka willow Sitka spruce		
Bird Species Observed	American robin bald eagle European starling	northern harrier rock pigeon	song sparrow white-crowned sparrow		

3.2 Bird/Habitat Interactions

Biologists observed 55 bird species during the field surveys. For each observation, biologists noted species, abundance, and associated habitat type. Many species were observed in a wide range of habitat types; others were more limited in their distribution. The following paragraphs summarize field observations of various species' use of each habitat type, with some additional insights drawn from literature.

The **Open Water** habitat type provides an important staging area for migratory birds to rest and feed (Armstrong et al. 2004). Biologists observed rafts of dabbling and diving ducks, such as mallards, American wigeons, Canada geese, and green-winged teals in this habitat type. Most such observations occurred in Fritz Cove, near the mouth of the Mendenhall River, and in the western Gastineau Channel. Small rafts (approximately 10 individuals) of lesser scaup and ring-necked ducks were observed feeding in the southern lake of the Twin Lakes area, as was a lone hooded merganser. Two horned grebes were seen feeding at the pond near the Fish Creek estuary. Large groups of gulls (including Bonaparte's, California, glaucous-winged, herring, and short-billed gulls) were observed in and near areas classified as Open Water throughout the study area.

The **Unvegetated Intertidal** habitat type provides important foraging habitat for a wide range of species. Biologists observed ducks, shorebirds, eagles, and gulls feeding on barnacles, mussels, rockweed, sand lance, and other food sources in this nutrient-rich habitat. Most of these observations were made during low tide along the expanses of exposed mud flats and mussel/barnacle beds between Lemon Creek and Salmon Creek. Greater yellowlegs, lesser yellowlegs, and sandpipers foraged in the tidal channels and estuaries near Sunny Point, the Fish Creek estuary, and the sloughs near the Airport Trail during low tides. Many gulls and eagles were observed near the Salmon Creek estuary, feeding on small fish and invertebrates as the tide receded.

The Intertidal Marsh habitat type is dominated by Lyngbye's sedge, an important food source for many species. Sedge seeds make up a large portion of the fall diet of resident Canada geese, and sedge-dominated areas support populations of invertebrates that are prey for a wide range of bird species (Armstrong et al. 2004). In survey area A11 near Ninemile Creek Road, biologists observed several juvenile western toads in and near small (approximately 1 to 2 square feet), shallow patches of freshly disturbed ground among the sedges. The disturbed areas may have represented predation attempts, possibly by birds. Areas of intertidal marsh habitat also provide resting areas for geese, ducks, shorebirds, and other species during migration or high tides. Near Sunny Point, biologists observed a northern harrier flushing and chasing a group of green-winged teal; a dispute between a merlin and northern harrier was also observed in this area. Seeds and insects in intertidal marshes provide forage for passerines, and the dense grasses provide hiding cover. Biologists frequently flushed sparrows and other songbirds while walking through these areas, and groups of American pipits were seen foraging.

Grasses in the **Coastal Meadow** habitat type provide foraging habitat and hiding cover for many species. Many of the bird species present in intertidal marsh areas were also seen in areas classified as Coastal Meadow, albeit less frequently; this may be attributable to the lower forage value of the plant species that make up most of the vegetative cover in coastal meadows, compared to that of Lyngbye's sedge (which is the predominant plant species many areas classified as Intertidal Marsh). Biologists observed red-winged blackbirds and American pipits foraging for seeds and insects. Burrows and tunnels in the grasses indicated the presence of voles and other small mammals, which provide prey for raptors. Seaweed, plant debris, trash, and other materials left by high tides provide foraging opportunities for corvids, gulls, and other species. Several Wilson's snipes were flushed from clumps of grass during field surveys near Sunny Point and survey area A11. Similar to areas of intertidal marsh, coastal meadows also provide resting areas for geese, ducks, shorebirds, and other species.

Areas classified as **Freshwater Emergent Wetland** bear many floristic and structural similarities to both intertidal marshes and coastal meadows. As such, the use of these areas by birds is substantially similar to what was described above for those habitat types. The two species observed in areas specifically classified as Freshwater Emergent Wetland (great blue heron and spotted sandpiper) are commonly seen in a variety of intertidal and other habitats.

Biologists encountered the **Scrub-Shrub Wetland** habitat type mainly at the edges of coastal meadows. Songbirds such as common yellowthroats, yellow warblers, orange-crowned warblers, Pacific wrens, common yellowthroats, and ruby-crowned kinglets were observed darting around among the willows.

The **Forested Wetland** habitat type provides foraging, resting, and breeding areas for a wide variety of birds. However, biologists conducting field surveys in September 2023 observed few birds in areas classified as Forested Wetland. This paucity of observations can be attributed to several factors, including (1) the scarcity of this habitat type in the survey areas, (2) the timing of the survey effort during the migration period, when most birds are not singing, (3) the abundance of hiding cover in this habitat type, and (4) limited sight distances for observers.

Structurally, the **Bog/Fen** habitat type is similar to both Freshwater Emergent Wetland and Scrub-Shrub Wetland. For reasons akin to those laid out for Forested Wetland—with the addition of the distance that separated Bog/Fen areas from bird-rich intertidal areas—biologists recorded few observations of birds in this habitat type.

Similar to Forested Wetland, the **Conifer Forest** habitat type supports a rich and diverse assemblage of bird species. This was the fourth most-abundant habitat type in the survey areas, providing opportunities to observe and document a comparatively large number of species. In addition, biologists found evidence of porcupine presence in survey area A3.

Although many areas classified as the **Disturbed** habitat type offer little in the way of forage or shelter, several opportunistic species make use of such areas. Gulls and eagles were frequently seen perched on utility poles and light standards, searching for prey.

4. Recommendations/Additional Information Needs

This report identifies several updates to the land cover type mapping that was developed for the 2022 *Wildlife and Fish Resources Technical Memorandum* for the Juneau Douglas North Crossing PEL Study. We recommend incorporating those updates—most notably, the identification of the Bog/Fen cover type—into the GIS data that are carried forward to support further analysis.

This report does not provide an analysis of potential effects of the alternatives on bird species or habitats, nor is it intended to rank or prioritize the alternatives. Such assessments would be performed during the NEPA process, as part of a comprehensive review of the project. Analyses of potential project-related impacts on wildlife should be based primarily on impacts to habitat. In other words, if an alternative would affect a certain habitat type, it should be assumed those effects would translate into impacts on any wildlife species known or expected to use that habitat, regardless of whether those species have been observed at that location.

In addition to the data sources identified in this and other reports, information about bird species in the study area can be drawn from bird activity logs prepared in support of the Juneau Airport's Wildlife Hazard Management Program.

Finally, if more information on the interactions of birds with habitats is desired, additional surveys during the spring migration and breeding periods would offer more direct insight. As noted in the work plan for this survey effort (Attachment 1), survey data collected during late September offer a snapshot of the activity of resident bird species and species that migrate through the study area. Information about seasonal and interannual variability in abundance can be drawn from existing data sources, such as eBird (2023).

5. References

- Alaska Audubon Society. 2023. Southeast Alaska birding trail—Juneau trails bird species checklists. Accessed September 2023. https://ak.audubon.org/southeast-alaska-birding-trail/juneau.
- Alaska Department of Fish and Game (ADF&G). 2015. Alaska wildlife action plan. Juneau, Alaska. Accessed April 2022.
 - https://www.adfg.alaska.gov/static/species/wildlife action plan/2015 alaska wildlife action plan.pdf.
- Alberta Environment and Parks. 2020. Bird migration survey protocol. Published January 2020. Alberta, Canada. Accessed September 2023. https://open.alberta.ca/dataset/e7a8a3c5-8c36-41d4-acdd-1694fb5f5880/resource/e9193de6-14c9-462c-b81f-78b1f995bbdb/download/aep-bird-migration-protocol-2020.pdf.
- Armstrong, R.H., R.L. Carstensen, M.F. Wilson, and M.H. Osborn. 2009. The Mendenhall Wetlands: A globally recognized important bird area. Accessed April 2022. https://www.southeastalaskalandtrust.org/wp-content/uploads45yl789N/2011/01/Mendenhall-Wetlands-book.pdf.
- Armstrong, R.H., R.L. Carstensen and M.F. Wilson. 2004. Hotspots: Bird survey of Mendenhall Wetlands, April 2002 to May 2003. Juneau Audubon Society and Taku Conservation Society. 74 pp.
- Alaska Department of Fish and Game. 2023. Birds Species List. Accessed September 2023. https://www.adfg.alaska.gov/index.cfm?adfg=animals.listbirds.
- Cain, S., J. Hodges, and E. Robinson-Wilson. 1988. Bird use of the Mendenhall Wetlands in Juneau, Alaska. USFWS, Juneau, AK. 72 pp.
- Carstensen, R. 2013. A natural history of Juneau trails: A watershed approach. Discovery Southeast. 71 pp.
- Chesser, R.T., S.M. Billerman, K.J. Burns, C. Cicero, J.L. Dunn, B.E. Hernández-Baños, R.A. Jiménez, A.W. Kratter, N.A. Mason, P.C. Rasmussen, J.V. Remsen, Jr., and K. Winker. 2023. Checklist of North American Birds (online). American Ornithological Society. Accessed October 2023. https://checklist.americanornithology.org/taxa/.
- eBird. 2023. Mendenhall Wetlands State Game Refuge Bird Observations. Accessed September 2023. Available at: https://ebird.org/region/US-AK-110/hotspots?yr=all&m=
- Federal Aviation Administration and City and Borough of Juneau, Alaska (FAA and CBJ). 2007. Juneau International Airport. Final EIS and Section 4(f) Evaluation.
- HDR Alaska, Inc. 2005. Draft Environmental Impact Statement (DEIS): Project Development Summary Report, Juneau Second Crossing. Prepared for Alaska Department of Transportation and Public Facilities. May 2005.

- Juneau Audubon Society. 2004. Fall bird migration observations—Juneau, Alaska. Accessed September 2023. http://www.juneau-audubon-society.org/Birds/Reports/migrate2004.htm.
- Juneau Audubon Society. 2007. Birds of Juneau, Alaska Checklist. Accessed September 2023. http://www.juneau-audubon-society.org/Birds/Check Lists/JUNEAU Checklist Rev Jan 2007.pdf.
- Parametrix. 2022. Wildlife and Fish Resources Technical Memorandum for the Juneau Douglas North Crossing PEL Study. April 21, 2022.
- Watson, S. 1979. Avian habitats and use of the Mendenhall Wetlands Wildlife Refuge. ADF&G unpublished report, Juneau, AK 28 pp.

Attachment 1

Draft Work Plan for Bird and Upland Habitat Surveys

TECHNICAL MEMORANDUM

DATE: September 14, 2023

TO: Ben Storey, Regional Environmental Manager, AK DOT&PF Southcoast Region

FROM: Kaylee Moser and Mike Hall, Parametrix

SUBJECT: Bird Survey Work Plan

CC: Christy Gentemann, Environmental Impact Analyst, AK DOT&PF Southcoast Region

Theresa Dutchuk, Senior NEPA Specialist, DOWL

PROJECT NAME: Juneau Douglas North Crossing (JDNC)

INTRODUCTION

The City and Borough of Juneau (CBJ) has partnered with Alaska Department of Transportation and Public Facilities (DOT&PF) to explore a north crossing between Juneau and Douglas Island, north of the existing Douglas Island Bridge. DOT&PF has chosen the Planning and Environmental Linkage (PEL) process to evaluate the purpose and need for a north crossing, identify potential north crossing alternatives, evaluate the alternatives, and identify recommended crossing(s). In support of the evaluation of alternatives the project team is collecting environmental data to understand potential impacts of six proposed alternatives. This work plan has been developed to outline the goals, objectives, and methods for field surveys to document habitat use by birds during the fall migration period.

GOALS AND OBJECTIVES

The goals of this effort are to document bird species present in the study area during the fall migration period and to identify differences in bird use of the habitat types that have been identified in the study area. Information collected through this effort will be used to evaluate the potential impacts of the alternatives on birds and bird habitat.

To accomplish these goals, we propose to

- Collect observations of the structural and vegetative composition of the land cover types that were defined and mapped in the Wildlife and Fish Resources Technical Memorandum for the Juneau Douglas North Crossing PEL Study and
- Conduct field surveys to document bird species detected and to characterize the interactions of birds with different habitat types.

METHODOLOGY

Preliminary Research: Before beginning fieldwork, biologists will review available aerial photos, bird species lists, and observation records from multiple resources, including:

- Wildlife and Fish Resources Technical Memorandum for the Juneau Douglas North Crossing PEL Study (Parametrix 2022)
- Juneau Audubon Society (http://www.juneau-audubon-society.org/)
- Alaska Audubon Society (https://ak.audubon.org/southeast-alaska-birding-trail/juneau)

- eBird (https://ebird.org/hotspots)
- Alaska Department of Fish and Game (https://www.adfg.alaska.gov/index.cfm?adfg=animals.listbirds)
- The Mendenhall Wetlands: A Globally Recognized Important Bird Area (Armstrong et al. 2009)
- Google Earth images
- Other relevant reports (e.g., FAA and CBJ 2007).

Study Area: The study area for habitat evaluations and bird surveys will consist of the PEL study area, as identified in Wildlife and Fish Resources Technical Memorandum (Parametrix 2022). Biologists identified 10 preliminary locations for field surveys (see Figure 1, attached). A primary consideration in identifying survey area locations was to provide opportunities for collecting observations of habitat conditions and bird presence in a variety of habitat types. Survey area locations were also based on proximity to the proposed alternatives, proximity to identified birding hotspots, and access.

Equipment: Biologists will use a Trimble DA2 Catalyst Global Navigation Satellite System Global Positioning System (GPS) receiver with submeter accuracy, accompanied by a tablet computer with the ArcGIS Field Map application containing the base condition mapping layers.

Habitat Evaluations: Biologists will collect data to describe the characteristics of each land cover type. Observations of birds in these cover types will be used to identify the associations of birds with each habitat type. Data collected in each land cover type will include plant species, stand structure, habitat quality, and land use. While collecting habitat evaluation data, biologists will confirm and, as needed, correct assigned cover type classifications and boundaries. Corrections to the boundaries and cover type designations will be made in ArcGIS Field Maps. Biologists will also record incidental observations of non-avian taxa and evidence of their presence (e.g., tracks and scat).

Bird Surveys: Two biologists will conduct area-search surveys in mid-to-late September. Area-search surveys will be performed by walking through areas surrounding the yellow lines depicted on Figure 1, stopping as needed to observe bird activity and record observations. A single, 1- to 3-hour survey visit will be conducted in each survey area. For each detection, biologists will record the species, estimated number of individuals, and what habitat type birds were using.

Biologists aim to survey 2 or 3 areas per day, weather permitting, and will target surveys around dawn and dusk. In accordance with methodologies developed for bird surveys during migratory periods (e.g., Alberta Environment and Parks 2020), surveys will be conducted during the morning and the evening. Morning surveys begin around sunrise and will continue for 3 to 4 hours. Evening surveys will be conducted during the 3- to 4-hour period leading up to sunset. This approach will allow biologists to collect data on a wider array of species than would be present during just one of these time periods, as different species are active at different times of the day. The morning surveys may capture nocturnal migrants landing after nighttime flights and diurnal migrants beginning migration in the daylight hours. The evening surveys my capture soaring migrants using thermals, waterfowl during foraging flights, and nocturnal migrants beginning nighttime flights (Alberta Environment and Park 2020). Surveys will not be conducted during periods of strong wind or heavy rain. To minimize the risk of conflict with hunters, biologists will avoid conducting surveys in popular hunting areas during twilight hours (approximately 30 to 60 minutes after sunrise and 30 to 60 minutes before sunset, depending on cloud cover).

Table 1 on the following page provides details for each area. Access to at least four of the areas will depend on tidal conditions. Biologists will review tide charts before conducting surveys and plan appropriately.

BACKGROUND INFORMATION

Survey data collected during late September offers a snapshot of the activity of resident bird species and species that use the study area as a migratory corridor. The fall migration period in Juneau extends from August 1 through November 30 (Juneau Audubon Society 2004). A list of bird species expected to be observed in September will be compiled before bird surveys begin, using the resources identified above.

Table 1. JDNC Bird Survey Area Information

Survey Area ID	Approximate Survey Area Size (acres)	Habitat Types Present ¹	Access to Survey Area	Tide Dependency
A1	19	Coniferous Forest, Coastal Meadow, Unvegetated Intertidal, Open Water	Follow Mendenhall Peninsula Trail	No
A2	11	Coniferous Forest, Intertidal Marsh, Unvegetated Intertidal, Open Water	Park at North Douglas Boat Launch Ramp and walk east	No
А3	30	Coniferous Forest, Freshwater Emergent Wetland, Coastal Meadow, Intertidal Marsh, Unvegetated Intertidal, Open Water	Follow the Fish Creek Trail	No
A4	40	Freshwater Emergent Wetland, Intertidal Marsh, Open Water	Follow the Mendenhall Refuge Trail	No
A5	9	Freshwater Emergent Wetland, Coastal Meadow, Intertidal Marsh, Unvegetated Intertidal	Park at the western end of Sunny Drive and walk southwest	Yes- Survey closer to low tide
A6	12	Coniferous Forest, Forested Wetland, Scrub-Shrub wetland, Freshwater Emergent Wetland	Walk through City and Borough of Juneau Lands and Resources parcels 6D0901060110 and 6D0901070050	No
A7	10	Coastal Meadow, Unvegetated Intertidal, Open Water	Park at the Mendenhall Wetland Scenic View pull out and walk southeast towards Lemon Creek.	Yes- Survey closer to low tide
А8	6	Intertidal Marsh, Unvegetated Intertidal, Open Water	Park at pullout along North Douglas Highway, walk through City and Borough of Juneau Lands and Resources parcels 6D0901000090 and 6D0901000080	Yes- Survey closer to low tide
А9	18	Coastal Meadow, Unvegetated Intertidal, Open Water	Park at the Mendenhall Wetland Scenic View pull out and walk southeast.	No
A10	12	Coastal Meadow, Unvegetated Intertidal, Open Water	Walk along the Salmon Creek outlet	Yes- Survey closer to low tide

¹ See the JDNC PEL Wildlife and Fish Technical Memorandum for habitat type descriptions.

If you have any questions, we are available to discuss.

Kaylee Moser, Biologist kmoser@parametrix.com

Mike Hall, Senior Scientist mhall@parametrix.com

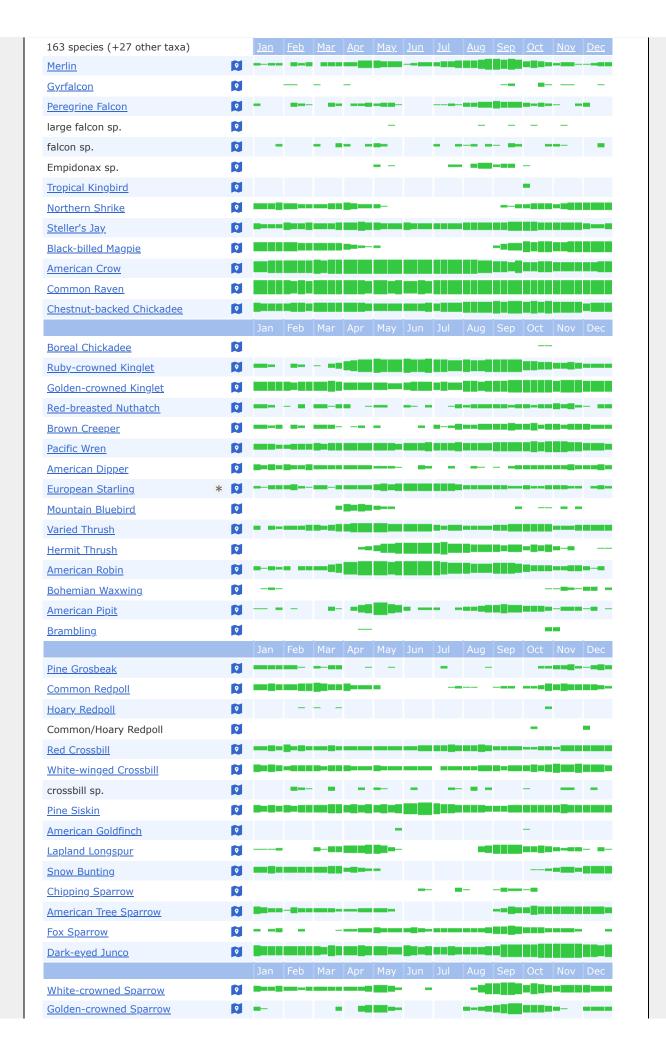
REFERENCES:

- Alaska Audubon Society. 2023. Southeast Alaska Birding Trail—Juneau Trails Bird Species Checklists. Available at: https://ak.audubon.org/southeast-alaska-birding-trail/juneau
- Alberta Environment and Parks. 2020. Bird Migration Survey Protocol. Published January 2020. Alberta, Canada. Available at: https://open.alberta.ca/dataset/e7a8a3c5-8c36-41d4-acdd-1694fb5f5880/resource/e9193de6-14c9-462c-b81f-78b1f995bbdb/download/aep-bird-migration-protocol-2020.pdf
- Armstrong, R.H., R.L. Carstensen, M.F. Wilson, and M.H. Osborn. 2009. The Mendenhall Wetlands: A Globally Recognized Important Bird Area. Available at https://www.southeastalaskalandtrust.org/wp-content/uploads45y1789N/2011/01/Mendenhall-Wetlands-book.pdf.
- Alaska Department of Fish and Game. 2023. Birds Species List. Available at: https://www.adfg.alaska.gov/index.cfm?adfg=animals.listbirds
- Federal Aviation Administration and City and Borough of Juneau, Alaska (FAA and CBJ). 2007. Juneau International Airport. Final EIS and Section 4(f) Evaluation.
- Juneau Audubon Society. 2004. Fall Bird Migration Observations—Juneau, Alaska. Available at: 2004 Juneau Fall Bird Migration Report (juneau-audubon-society.org)
- Juneau Audubon Society. 2007. Birds of Juneau, Alaska Checklist. Available at: http://www.juneau-audubon-society.org/Birds/Check Lists/JUNEAU Checklist Rev Jan 2007.pdf
- Parametrix. 2022. Wildlife and Fish Resources Technical Memorandum for the Juneau Douglas North Crossing PEL Study. April 21, 2022.


Attachment 2

eBird Sighting Frequency
Data for the Mendenhall
Wetlands Important
Birding Area





© Cornell Lab of Ornithology | Contact | FAQ

Attachment 3

Site Visit Summaries

Survey Area A1

Date and time: 9/22/2023, 3:45pm – 6:15pm **Conditions:** overcast, light rain, 45°F

Habitat Association	Approximate Abundance
Fly-over	60
Intertidal Marsh	5
Fly-over	2
Conifer Forest	3
Open Water	50
Open Water	5
Unvegetated Intertidal	2
Conifer Forest	4
Fly-over	2
Intertidal Marsh	2
	Fly-over Intertidal Marsh Fly-over Conifer Forest Open Water Open Water Unvegetated Intertidal Conifer Forest Fly-over

Survey Area A2

Date and time: 9/21/2023, 2:40pm – 4:20pm **Conditions:** overcast, 45°F

Species	Habitat Association	Approximate Abundance
bald eagle	Fly-over	2
short-billed gull	Unvegetated Intertidal	5
mallard	Intertidal Marsh/Open Water	10
golden-crowned sparrow	Conifer Forest/Intertidal Marsh	2
song sparrow	Intertidal Marsh	3
Pacific wren	Intertidal Marsh	3
herring gull	Intertidal Marsh/Open Water	10
Bonaparte's gull	Unvegetated Intertidal	3
common raven	Conifer Forest	2
red-necked grebe	Open Water	1
Canada goose	Open Water	10

Survey Area A3

Date and time: 9/25/2023, 3:20pm – 6:00pm **Conditions:** partially sunny, 55°F

Species	Habitat Association	Approximate Abundance
belted kingfisher	Conifer Forest/Coastal Meadow	1
varied thrush	Conifer Forest	2
black-billed magpie	Conifer Forest	1
horned grebe	Open Water	2
herring gull	Open Water	5
short-billed gull	Open Water	2
bald eagle	Unvegetated Intertidal	5
Lincoln's sparrow	Intertidal Marsh	3
green-winged teal	Open Water/Intertidal Marsh	5
Pacific wren	Conifer Forest	3
greater yellowlegs	Unvegetated Intertidal	2
American crow	Intertidal Marsh	2
mallard	Fly-over/Open Water	4
dark-eyed junco	Conifer Forest	5
American wigeon	Unvegetated Intertidal/Open Water	500

Survey Area A4

Date and time: 9/19/2023, 3:30pm – 7:30pm **Conditions:** sunny, 55°F

Species	Habitat Association	Approximate Abundance
Lincoln's sparrow	Intertidal Marsh	15
white-crowned sparrow	Intertidal Marsh	5
northern harrier	Intertidal Marsh	1
western sandpiper	Unvegetated Intertidal	50
Canada geese	Open Water	100
mallard	Open Water	70
Savannah sparrow	Intertidal Marsh	2
common raven	Fly-over/Conifer Forest	2
Eurasian collared-dove	Conifer Forest/Intertidal Marsh	2
sharp-shinned hawk	Conifer Forest	1
merlin	Fly-over/Intertidal Marsh	1
chestnut-backed chickadee	Conifer Forest	50
orange-crowned warbler	Conifer Forest	3
bald eagle	Fly-over/Conifer Forest	4
dark-eyed junco	Conifer Forest	5
great blue heron	Freshwater Emergent Wetland	1
herring gull	Open Water	5
greater yellowlegs	Unvegetated Intertidal	10

Survey Area A5 (western and southern portions)

Date and time: 9/25/2023, 8:40am – 12:00pm **Conditions:** partially cloudy/foggy, 50°F

Species	Habitat Association	Approximate Abundance
American robin	Coastal Meadow	2
Bald eagle	Fly-over	3
Steller's jay	Scrub-Shrub Wetland	2
common raven	Fly-over	2
common yellowthroat	Scrub-Shrub Wetland/Coastal Meadow	1
Lincoln's sparrow	Scrub-Shrub Wetland/Coastal Meadow	2
Pacific wren	Scrub-Shrub Wetland	3
orange-crowned warbler	Scrub-Shrub Wetland	3
ruby-crowned kinglet	Scrub-Shrub Wetland	2
song sparrow	Coastal Meadow	2
red-winged blackbird	Coastal Meadow	15
Wilson's snipe	Intertidal Marsh	2
Savannah sparrow	Intertidal Marsh	3
northern harrier	Intertidal Marsh	1
merlin	Intertidal Marsh	1
white-crowned sparrow	Intertidal Marsh/Coastal Meadow	2
American crow	Fly-over	5
mallard	Fly-over	40
northern shoveler	Fly-over	2
American wigeon	Fly-over	30
American pipit	Unvegetated Intertidal	30

Survey Area A5 (eastern portion)

Date and time: 9/26/2023, 3:30pm – 5:00 pm **Conditions:** light rain, 45°F

		Approximate
Species	Habitat Association	Abundance
Song sparrow	Scrub-shrub Wetland	5
Steller's jay	Conifer Forest	2
Pacific wren	Coastal Meadow/Conifer Forest	5
red-winged blackbird	Intertidal Marsh	20
dark-eyed junco	Conifer Forest	5
white-crowned sparrow	Intertidal Marsh/Conifer Forest	5
northern pintail	Open Water	2
glaucous-winged gull	Unvegetated Intertidal	10
American pipit	Intertidal Marsh	5
bald eagle	Fly-over	2
Savannah sparrow	Coastal Meadow	3
cackling goose	Fly-over	5

Survey Area A6

Date and time: 9/21/2023, 4:45pm – 5:45pm **Conditions:** overcast, light rain, 45°F

		Approximate
Species	Habitat Association	Abundance
common raven	Conifer Forest	1
American robin	Conifer Forest	2

Survey Area A7

Date and time: 9/22/2023, 9:15am – 11:30am **Conditions:** overcast, 45°F

		Approximate
Species	Habitat Association	Abundance
common raven	Intertidal Marsh	5
	Intertidal Marsh/Conifer Forest/	
bald eagle	Unvegetated Intertidal	15
Canada goose	Intertidal Marsh/Open Water	60
glaucous-winged gull	Fly-over/Unvegetated Intertidal	10
ruby-crowned kinglet	Conifer Forest	5
song sparrow	Intertidal Marsh/Conifer Forest	2
fox sparrow	Intertidal Marsh	1
northern harrier	Intertidal Marsh	1
green-winged teal	Open Water	30
short-billed gull	Unvegetated Intertidal/Open Water	50
herring gull	Unvegetated Intertidal/Open Water	200
California gull	Unvegetated Intertidal/Open Water	100
glaucous-winged gull	Unvegetated Intertidal/Open Water	100
Bonaparte's gull	Unvegetated Intertidal/Open Water	50
Wilson's snipe	Intertidal Marsh	1
merlin	Intertidal Marsh	1

Survey Area A6/A8

Date and time: 9/20/2023, 9:00am – 12:30pm **Conditions:** overcast, periodic light rain, 45°F

Species	Habitat Association	Approximate Abundance
dark-eyed junco	Conifer Forest	2
common raven	Fly-over	2
bald eagle	Unvegetated Intertidal	20
short-billed gull	Unvegetated Intertidal/Open Water	20
herring hull	Unvegetated Intertidal/Open Water	20
glaucous-winged gull	Unvegetated Intertidal/Open Water	20
northern pintail	Unvegetated Intertidal/Open Water	5
American wigeon	Unvegetated Intertidal/Open Water	10
Canada geese	Unvegetated Intertidal	40
Steller's jay	Conifer Forest	2
ruby-crowned kinglet	Conifer Forest	5
merlin	Unvegetated Intertidal	1
lesser yellowlegs	Unvegetated Intertidal	3
American robin	Conifer Forest	1
golden-crowned sparrow	Conifer Forest	2

Survey Area A9

Date and time: 9/28/2023, 7:00am – 11:00am **Conditions:** partially cloudy, 45°F

Species	Habitat Association	Approximate Abundance
American robin	Disturbed (in alders along riprap)	3
bald eagle	Fly-over/Unvegetated Intertidal	10
song sparrow	Disturbed (in alders along riprap)	1
green-winged teal	Unvegetated Intertidal	9
American crow	Fly-over	5
Bonaparte's gull	Unvegetated Intertidal/Open Water	10
Herring gull	Unvegetated Intertidal/Open Water	20
short-billed gull	Unvegetated Intertidal/Open Water	20
glaucous-winged gull	Unvegetated Intertidal/Open Water	10
mallard	Fly-over	15
least sandpiper	Unvegetated Intertidal	2
green-winged teal	Unvegetated Intertidal	20
common raven	Fly-over	5
western sandpiper	Unvegetated Intertidal	15
greater yellowlegs	Unvegetated Intertidal	2
pectoral sandpiper	Unvegetated Intertidal	1
American pipit	Intertidal Marsh	3
white-crowned sparrow	Disturbed (in alders along riprap)	1
rock pigeon	Disturbed (along riprap near highway)	1

Survey Area A10

Date and time: 9/19/2023, 9:15am – 11:05am **Conditions:** partially sunny, 55°F

		Approximate
Species	Habitat Association	Abundance
American crow	Fly-over/Scrub-Shrub Wetland	20
	Fly-over/ Scrub-Shrub Wetland/	
common raven	Unvegetated Intertidal	20
short-billed gull	Unvegetated Intertidal/Open Water	20
herring gull	Unvegetated Intertidal/Open Water	40
Bonaparte's gull	Unvegetated Intertidal/Open Water	20
California gull	Unvegetated Intertidal/Open Water	10
glaucous-winged gull	Unvegetated Intertidal/Open Water	40
bald eagle	Fly-over/ Unvegetated Intertidal	20
merlin	Fly-over/ Scrub-Shrub Wetland	1
Steller's jay	Scrub-Shrub Wetland	1
green-winged teal	Unvegetated Intertidal/Open Water	20
song sparrow	Intertidal Marsh/ Scrub-Shrub Wetland	1
yellow warbler	Scrub-Shrub Wetland	1
European starling	Fly-over/ Unvegetated Intertidal	100
American dipper	Intertidal Marsh	1

Survey Area A11

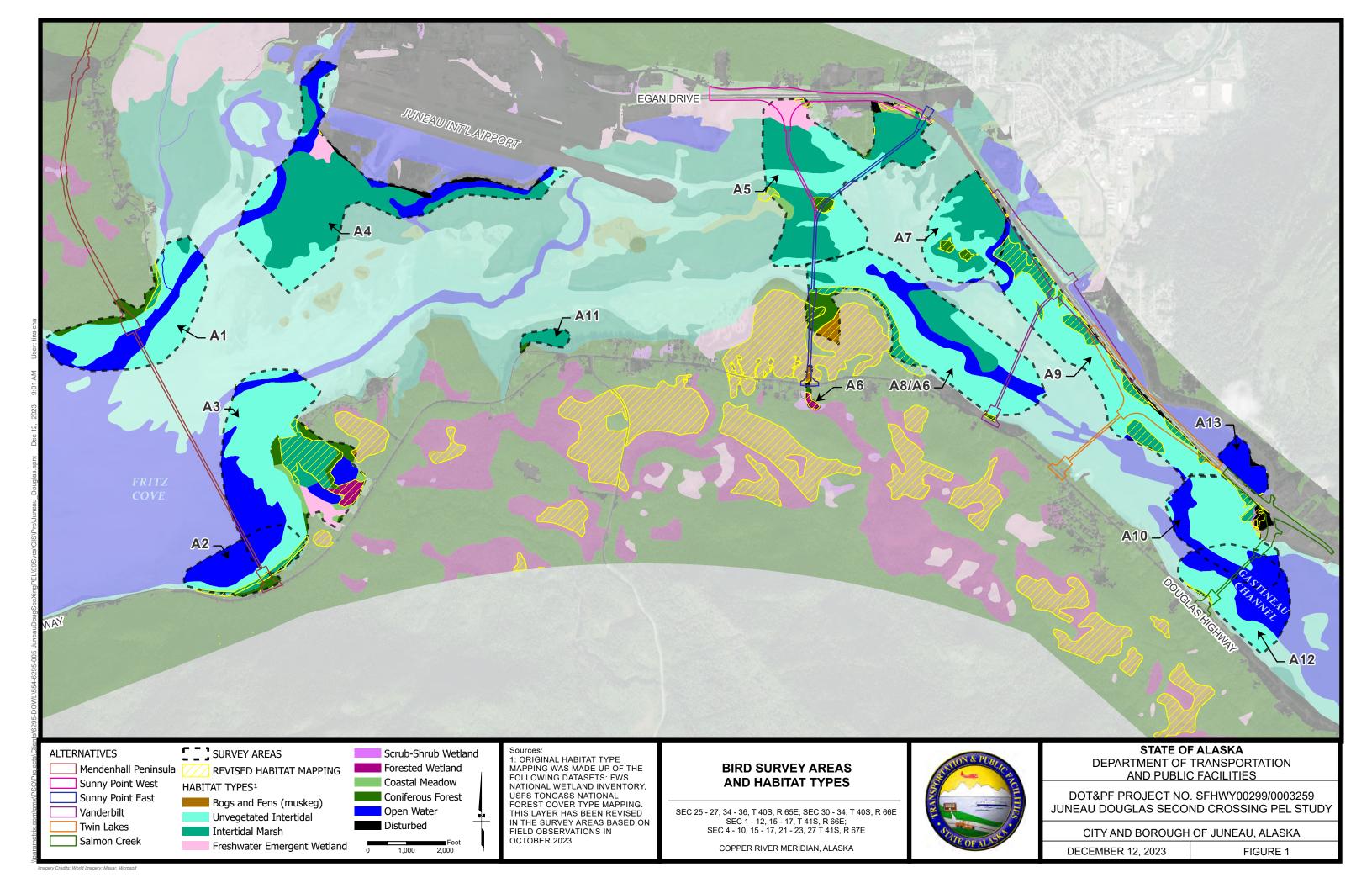
Date and time: 9/19/2023, 12:00pm – 1:00pm **Conditions:** sunny, 55°F

Species	Habitat Association	Approximate Abundance
Lincoln's sparrow	Intertidal Marsh	15
Pacific wren	Forested Wetland	1
Savannah sparrow	Intertidal Marsh	15
Wilson's snipe	Intertidal Marsh	1
golden-crowned sparrow	Intertidal Marsh	1
song sparrow	Conifer Forest	1

Survey Area A12

Date and time: 9/25/2023, 6:20pm – 7:00pm **Conditions:** partially sunny, 50°F

		Approximate
Species	Habitat Association	Abundance
mallard	Open Water	40
American crow	Conifer Forest	5
bald eagle	Fly-over/ Unvegetated Intertidal	15
short-billed gull	Unvegetated Intertidal	5
herring gull	Unvegetated Intertidal	5
American pipit	Unvegetated Intertidal	2
European starling	Disturbed	30


Survey Area A13

Date and time: 9/19/2023, 8:00am – 8:30am **Conditions:** partially sunny 50°F **Date and time:** 9/28/2023, 3:30pm – 4:45pm **Conditions:** overcast, light rain, 45°F

Species	Habitat Association	Approximate Abundance
northern harrier	Disturbed (perched on light pole)	1
hooded merganser	Open Water	1
bald eagle	Disturbed (perched on light pole)	2
song sparrow	Conifer Forest	1
ring-necked duck	Open Water	10
lesser scaup	Open Water	10

Attachment 4

Revisions to Preliminary
Habitat Type Mapping from
the Wildlife and Fish
Resources Technical
Memorandum

Attachment 5

Common and Scientific Names of Species Mentioned in this Report

Common Names and Scientific Names of Species Mentioned in this Report

Animals

Common Name	Scientific Name
American crow	Corvus brachyrhynchos
American dipper	Cinclus mexicanus
American pipit	Anthus rubescens
American robin	Turdus migratorius
American wigeon	Mareca americana
bald eagle	Haliaeetus leucocephalus
belted kingfisher	Megaceryle alcyon
black-billed magpie	Pica hudsonia
Bonaparte's gull	Chroicocephalus philadelphia
cackling goose	Branta hutchinsii
California gull	Larus californicus
Canada goose	Branta canadensis
chestnut-backed chickadee	Poecile rufescens
common raven	Corvus corax
common yellowthroat	Geothlypis trichas
dark-eyed junco	Junco hyemalis
Eurasian collared-dove	Streptopelia decaocto
European starling	Sturnus vulgaris
fox sparrow	Passerella iliaca
glaucous-winged gull	Larus glaucescens
golden-crowned sparrow	Zonotrichia atricapilla
great blue heron	Ardea herodias
greater yellowlegs	Tringa melanoleuca
green-winged teal	Anas crecca
herring gull	Larus argentatus
hooded merganser	Lophodytes cucullatus
horned grebe	Podiceps auritus
least sandpiper	Calidris minutilla
lesser scaup	Aythya affinis

Common Name	Scientific Name
lesser yellowlegs	Tringa flavipes
Lincoln's sparrow	Melospiza lincolnii
mallard	Anas platyrhynchos
merlin	Falco columbarius
North American porcupine	Erethizon dorsatum
northern harrier	Circus hudsonius
northern pintail	Anas acuta
northern shoveler	Spatula clypeata
orange-crowned warbler	Leiothlypis celata
Pacific wren	Troglodytes pacificus
pectoral sandpiper	Calidris melanotos
red-necked grebe	Podiceps grisegena
red-winged blackbird	Agelaius phoeniceus
ring-necked duck	Aythya collaris
rock pigeon	Columba livia
ruby-crowned kinglet	Corthylio calendula
Savannah sparrow	Passerculus sandwichensis
sharp-shinned hawk	Accipiter striatus
short-billed gull	Larus brachyrhynchus
song sparrow	Melospiza melodia
spotted sandpiper	Actitis macularius
Steller's jay	Cyanocitta stelleri
varied thrush	Ixoreus naevius
vole	Microtus spp.
western sandpiper	Calidris mauri
western toad	Anaxyrus boreas
white-crowned sparrow	Zonotrichia leucophrys
Wilson's snipe	Gallinago delicata
yellow warbler	Setophaga petechia

Avian nomenclature drawn from the American Ornithological Society checklist of North American birds (Chesser et al. 2023).

Common Names and Scientific Names of Species Mentioned in this Report

Plants

Common Name	Scientific Name
arrowgrass	Triglochin maritimum
Barclay willow	Salix barclayi
beach pea	Lathyrus japonica var. maritimus
beach rye	Leymus mollis
black cottonwood	Populus balsamifera
bluejoint reedgrass	Calamagrostis canadensis
bog cranberry	Vaccinium oxycoccos
bog rosemary	Andromeda polifolia
bunchberry	Cornus canadensis
Canadian sandspurry	Spergularia canadensis
cleavers	Galium trifidum
cow parsnip	Heracleum maximum
crowberry	Empetrum nigrum
devil's club	Oplopanax horridus
Douglas' water-hemlock	Cicuta douglasii
eelgrass	Zostera marina
fool's huckleberry	Menziesia ferruginea
fernleaf goldthread	Coptis aspleniifolia
fewflower sedge	Carex pauciflora
fireweed	Chamerion angustifolium
five-leaf bramble	Rubus pedatus
foxtail barley	Hordeum jubatum
Gmelin's saltweed	Atriplex gmelinii
goosetongue	Plantago maritima
green algae species	Vaucheria spp,, Enteromorpha spp.
hemlock parsley	Conioselinum gmelinii
kneeling angelica	Angelica genuflexa
Labrador tea	Ledum palustre
lady fern	Athyrium cyclosorum

Common Name	Scientific Name
lingonberry	Vaccinium vitis-idaea
low chickweed	Stellaria humifusa
Lyngbye's sedge	Carex lyngbyei
marsh cinquefoil	Comarum palustre
Nootka lupine	Lupinus nootkatensis
northern grass-of- Parnassus	Parnassia palustris
oval-leaved blueberry	Vaccinium ovalifolium
Pacific alkali grass	Puccinellia nutkaensis
Pacific water-parsley	Oenanthe sarmentosa
red fescue	Festuca rubra
rockweed	Fucus vesiculosus
sea milkwort	Glaux maritima
seabeach sandwort	Honckenya peploides
seablite	Suaeda calceoliformis
shore pine	Pinus contorta
silverweed	Potentilla anserina
Sitka alder	Alnus viridis ssp. sinuata
Sitka spruce	Picea sitchensis
Sitka willow	Salix sitchensis
sphagnum moss	Sphagnum species
sweet gale	Myrica gale
tall cottongrass	Eriophorum angustifolium
tufted clubrush	Trichophorum cespitosum
tufted hairgrass	Deschampsia cespitosa
western hemlock	Tsuga heterophylla
western redcedar	Thuja plicata
yarrow	Achillea millefolium
yellow marsh-marigold	Caltha palustris
yellow skunk cabbage	Lysichiton americanus

Juneau Douglas North Crossing PEL Study Intertidal Habitat Survey Report

Prepared for Alaska Department of Transportation and Public Facilities

December 2023

Citation

Parametrix. 2023. Juneau Douglas North Crossing PEL Study Intertidal Habitat Survey Report. Prepared for Alaska Department of Transportation and Public Facilities by Parametrix, Seattle, Washington. December 2023.

Contents

1.	Introduction3					
2.	Meth	ods	3			
3.	Resu	lts	5			
	3.1	Salmon Creek	5			
	3.2	Twin Lakes	7			
	3.3	Vanderbilt	7			
	3.4	Sunny Point East	8			
	3.5	Sunny Point West	9			
	3.6	Mendenhall Peninsula	9			
4.	Reco	mmendations/Additional Information Needs	10			
5.	Refe	rences	11			
	BLES	ntertidal Habitat Type Definitions and Comparison to Other Classification Systems	4			
rac		Amount of Intertidal Habitat Type in Each Alternative Study Area, Rounded to the est Tenth-Acre	6			
PHO	OTOGI	RAPHS				
Pho	togra	ph 1. Intertidal Habitats in the Salmon Creek Study Area	5			
Pho	togra	ph 2. Intertidal Habitats in the Twin Lakes Study Area	7			
Pho	togra	ph 3. Intertidal Habitats in the Vanderbilt Study Area	8			
Pho	togra	ph 4. Intertidal Habitats in the Sunny Point East Study Area	8			
Pho	Photograph 5. Intertidal Habitats in the Sunny Point West Study Area9					
Pho	Photograph 6. Intertidal Habitats in the Mendenhall Peninsula Study Area					

ATTACHMENTS

- 1. Intertidal Mapbook
- 2. Intertidal Habitat Profiles

Acronyms and Abbreviations

CBJ City and Borough of Juneau

DOT&PF Alaska Department of Transportation and Public Facilities

GIS geographic information system

MHHW mean higher high water

MLLW mean lower low water

NEPA National Environmental Policy Act

PEL Planning and Environmental Linkages

December 2023 | 554-6295-005

1. Introduction

The City and Borough of Juneau (CBJ) has partnered with Alaska Department of Transportation and Public Facilities (DOT&PF) to study a possible transportation corridor to connect Juneau with the northern end of Douglas Island. DOT&PF has chosen the Planning and Environmental Linkage (PEL) process to evaluate a purpose and need and recommend alternatives for such a connection. The PEL study considers potential crossing locations between Douglas Island and mainland Juneau in the channel area north of the existing Douglas Island Bridge. The analyses conducted for the PEL may be incorporated into a future National Environmental Policy Act (NEPA) review.

In April 2023, DOT&PF identified six alternatives to advance for detailed development in the Juneau Douglas North Crossing PEL Study (see Attachment 1, Page 1). To support further evaluation of these alternatives, the project team performed field surveys to expand our understanding of environmental resources potentially affected by each alternative. This report identifies the goals and objectives of the field survey effort for intertidal habitats, describes the methodology employed, summarizes the findings of the field surveys, and provides recommendations for refining the data that will support future evaluations.

The goal of the intertidal habitat survey was to develop detailed mapping that would serve as the basis for evaluating the potential impacts of each alternative on intertidal habitats. The following objectives were defined:

- Prepare a preliminary version of the intertidal habitat map using existing data.
- Perform field-based habitat surveys in the intertidal zone of the study area.
- Verify or refine the intertidal habitat map and calculate the area of each habitat type in the survey area.

2. Methods

Existing data that were identified and reviewed before beginning fieldwork included the following:

- Google Earth imagery.
- Multispectral Landsat Imaging (https://earthexplorer.usgs.gov/).
- USGS Topographic Data (https://apps.nationalmap.gov/viewer/).
- The Alaska ShoreZone mapping system (https://alaskafisheries.noaa.gov/mapping/sz/).
- USFWS National Wetlands Inventory (https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/).
- Maps and documents developed for prior studies of the Juneau Douglas North Crossing (e.g., Parametrix 2022; HDR 2005) as well as other relevant reports (e.g., FAA and CBJ 2007).

Pertinent data from these resources were incorporated into a geographic information system (GIS) geodatabase and used to develop a preliminary map of intertidal habitat types. Data was made accessible in an ESRI ArcGIS Online webmap developed specifically for the project.

Habitat type classifications for this study were developed based in part on the existing national schema (Cowardin et al. 1979) as well as on categories developed for the Juneau International Airport Environmental Impact Statement (FAA and CBJ 2007). A crosswalk of these classifications is

provided in Table 1. Some degree of modification and refinement of these classifications was necessary based on observed field conditions.

Table 1. Intertidal Habitat Type Definitions and Comparison to Other Classification Systems

Habitat Type	NWI (Cowardin et al. 1979)	Juneau Airport EIS (FAA & CBJ 2007, Table 3-29)	Description
Subtidal	M1, E1, R1	Open Water	These are areas that remain inundated at extreme low tides (approximately -4 feet relative to MLLW). Submerged aquatic vegetation may or may not be present.
Lower intertidal mudflat	E2 AB/SB/US	Unvegetated	These areas are exposed at low tide and are unvegetated. They may include mud, sand, algal mats, and sparse vegetation.
Lower intertidal emergent marsh	E2 EM	Low Marsh	These areas are exposed at low tide and are vegetated. They may include Pacific alkali grass, goosetongue, and Lyngbye's sedge communities.
Intertidal rocky	E2 RS, M2 RS	N/A	These are areas of rocky or hard substrate anywhere in the intertidal zone.
Upper intertidal natural	E2 SS/F0	High Marsh, Supratidal, Shrub- scrub, Forest	These are areas in the upper portion of the intertidal zone that have established vegetation communities. They may include beach rye, coastal grass meadow, coastal forb meadow, reed canarygrass, deciduous shrub-scrub, deciduous forest, mixed woodland, spruce forest.
Upper intertidal developed	Special modifiers r,s,e	Disturbed, Seeded Grassland	These are areas in the upper portion of the intertidal zone that have been modified from the natural state. They may include human-created grassy areas, spoils, roadways, etc.

Notes: Sources include Cowardin et al. 1979; HDR Inc. 2005; FAA and CBJ 2007; Parametrix 2022. MLLW = mean lower low water

The study area for each alternative was defined as all intertidal areas¹ within the anticipated construction footprint for that alternative, plus a 150-foot buffer in all directions. Biologists performing field surveys gained access to the study areas via public lands (typically Mendenhall Wetland State Game Refuge access points and CBJ- or State-owned parcels). Surveys were conducted between September 28 and October 1, 2023, when low tides (ideally less than -1 foot relative to mean lower low water [MLLW]) occurred during daylight hours.

Biologists walked the accessible portions of the intertidal study areas and ground-truthed the preliminary field maps with a Trimble DA2 Catalyst Global Navigation Satellite System GPS receiver with submeter accuracy and iPad controller running an ArcGIS Field Map application. Where the preliminary map appeared outdated or inaccurate compared to existing conditions, biologists delineated the boundaries of defined habitat types and uploaded data to the webmap. Other observations, such as relative tide level, submerged aquatic vegetation communities, plant species, sediment grain sizes, visible benthic epifauna, wildlife use, and other habitat features were documented with notes and photographs.

¹ For this study, the intertidal zone was considered elevations between the shallow subtidal (approximately -10 feet MLLW) and the upper limit of tidal influence on community structure (in some places up to +25 feet MLLW).

Three additional habitat types were added as options to reflect field conditions. The first type, called Channel, included areas that were within intertidal elevations (i.e., higher than -4 feet relative to MLLW) but that remained submerged at low tides due to freshwater drainage from local creeks. This habitat type was used to distinguish creek mouths from lower intertidal mudflat. All other non-intertidal land covers within the study areas were considered Upland. In this report, Upland is a catch-all term that may include developed areas, forested areas, freshwater wetlands, and streams. This term may be defined and used differently in the wetland report. Finally, a habitat type was added to capture the unique characteristics of Twin Lakes study area, where water is impounded year-round by human-made control structures. These lake areas are neither upland nor intertidal; they were dubbed Impounded.

3. Results

The observed distribution of intertidal habitat types in the study area for each alternative is illustrated in Attachment 1 and summarized in Table 2. The total number of acres of each study area varied considerably, as did the nature of intertidal habitats. These differences are described for each alternative below. A descriptive profile of each habitat type is provided in Attachment 2.

3.1 Salmon Creek

The Salmon Creek study area covers a total of 79.5 acres, of which 28.2 acres are intertidal (Attachment 1, Page 2). The Salmon Creek alternative is the shortest alternative alignment, with an intertidal crossing distance² of approximately 2,100 feet. The study area includes the mouth of Salmon Creek where it flows under a bridge (Egan Drive) and an area of impounded water on the northeast side of Egan Drive where water levels are managed as part of Twin Lakes (Photograph 1A). It also includes the mouth of Falls Creek on Douglas Island. This alternative is one of only two that contain subtidal habitats due to its position at the head of Gastineau Channel, which is deeper to the southeast. The extensive unvegetated intertidal areas were characterized by mud and sand substrates, with scattered cobble and boulders. Proximity to the creek mouths resulted in other organic and inorganic debris across the beach and extensive mussel beds that have formed where hard attachment points exist (Photograph 1B).

Photograph 1. Intertidal Habitats in the Salmon Creek Study Area
1A (left): Mouth of Salmon Creek flowing under Egan Drive and across intertidal mudflat (upper right corner). Photo: NOAA ShoreZone
1B (right): Intertidal mudflat with patchy coverage of blue mussels (*Mytilus edulis*) and rockweed (*Fucus spp.*). Photo facing northeast.

² Intertidal crossing distance is measured along the length of the alignment from MHHW on the Juneau side to MHHW on the Douglas Island side.

6

Table 2. Amount of Intertidal Habitat Type in Each Alternative Study Area, Rounded to the Nearest 10th Acre

	Intertidal Habitat Type							Other Type		
Alignment	Subtidal	Channel	Lower Intertidal Mudflat	Lower Intertidal Emergent Marsh	Rocky Intertidal	Upper Intertidal Natural	Upper Intertidal Developed	Impounded	Upland	Study Area Total
Salmon Creek	5.6	0.7	16.3	3.0	-	1.1	1.5	4.2	47.1	79.5
Twin Lakes	-	3.5	54.8	1.7	-	0.4	3.8	15.8	29.6	109.4
Vanderbilt	-	5.5	33.0	24.1	-	13.3	2.8	13.6	36.5	128.7
Sunny Point East	-	2.0	3.7	21.5	-	17.9	-	-	35.0	80.1
Sunny Point West	-	2.6	1.8	17.4	-	16.1	-	-	109.2	147.1
Mendenhall Peninsula	36.6	-	29.2	0.9	0.1	0.8	-	-	155.3	222.8

December 2023 | 554-6295-005

3.2 Twin Lakes

The Twin Lakes study area covers a total of 109.4 acres, of which 64.1 acres are intertidal (Attachment 1, Page 3). Twenty-five percent of the intertidal area is northeast of Egan Drive, where water levels are controlled to maintain the Twin Lakes. The intertidal crossing distance of the Twin Lakes alignment is approximately 2,600 feet, but the study area also includes intertidal areas parallel and adjacent to Egan Drive for approximately 0.5 mile in either direction from where a crossing would connect. Within the study area, lower intertidal mudflat is the dominant habitat type (Photograph 2A), with a fringe of lower intertidal emergent marsh backed by and upper intertidal natural and developed. Channel areas correspond with culverts under Egan Drive, the mouth of Neilson Creek on Douglas Island, and the primary tidal channel(s) between Juneau and Douglas Island (Photograph 2B).

Photograph 2. Intertidal Habitats in the Twin Lakes Study Area

2A (left) Aerial view of the Twin Lakes alignment looking from Douglas Island across to Juneau. Photo: NOAA ShoreZone
2B (right) Intertidal mudflat with sandbars and channels of standing water. Photo facing west.

3.3 Vanderbilt

The Vanderbilt study area covers a total of 128.7 acres, of which 78.6 acres are intertidal (Attachment 1, Page 4). Thirty-nine percent of the intertidal area is northeast of Egan Drive. The intertidal crossing distance of the Vanderbilt alignment is approximately 3,600 feet, but the study area also includes approximately 1.2 miles of the intertidal zone parallel and adjacent to Egan Drive, some of which overlaps the Twin Lakes study area. A mix of intertidal mudflat and emergent marsh are found in this study area between Juneau and Douglas Island (Photograph 3A). Channels are associated with culverts under Egan Drive, the outlet of Lemon Creek (Photograph 3B), and the primary tidal channel(s).

Photograph 3. Intertidal Habitats in the Vanderbilt Study Area

3A (left) Douglas Island intertidal zone with unvegetated mudflat in the foreground and lower emergent marsh and upper intertidal natural habitat types in the background. Photo facing northwest.

3B (right) Mouth of Lemon Creek with Egan Drive on the left side of the frame. Photo facing southeast.

3.4 Sunny Point East

The Sunny Point East study area covers a total of 80.1 acres, of which 45.1 acres are intertidal (Attachment 1, Page 5). All of the intertidal area is south of Egan Drive. The intertidal crossing distance of the Sunny Point East alignment is approximately 5,200 feet with roughly half of this length shared with the Sunny Point West alignment. In this study area, the intertidal zone is predominantly emergent and upper marsh, with a network of tidal channels and mudflat edges (Photographs 4A and 4B). On the north end, the border of the intertidal zone is subtle as the marsh vegetation communities transition from freshwater wetland to estuarine plant communities. The study area runs through an isolated upland area halfway across the marsh and then continues south along the same alignment as the Sunny Point West alternative.

Photograph 4. Intertidal Habitats in the Sunny Point East Study Area

4A (left) Aerial view of emergent marsh and tidal channel network. Photo: NOAA ShoreZone 4B (right) Small tidal channel fringed by Lyngbye's sedge. Photo facing east

3.5 Sunny Point West

The Sunny Point West study area covers a total of 147.1 acres, of which 37.9 acres are intertidal (Attachment 1, Page 6). All of the intertidal area is south of Egan Drive. The intertidal crossing distance of the Sunny Point West alignment is approximately 4,000 feet with roughly half of this length shared with the Sunny Point East alignment; therefore, the mosaic of habitat types is similar to those described above (Photographs 5A, 5B).

Photograph 5. Intertidal Habitats in the Sunny Point West Study Area

5A (left) Small tidal channel with mudflat and emergent marsh. Photo facing south.
5B (right) Large tidal channel through the marsh. Photo facing west.

3.6 Mendenhall Peninsula

The Mendenhall Peninsula study area covers a total of 222.8 acres, of which 67.5 acres are intertidal (Attachment 1, Pages 7 and 8). The intertidal crossing distance of the Mendenhall Peninsula alignment is approximately 7,500 feet. This alternative contains the most subtidal habitat, spanning the head of Fritz Cove at the mouth of the Mendenhall River, and it also contains the only intertidal rocky habitat that was identified during the survey. The glacier-fed Mendenhall River supplies a large volume of freshwater and silt to this area; additionally, the mouth of Fish Creek on Douglas Island is east of the study area and contributes freshwater to the estuarine mixing zone (Photograph 6A). The upper portion of the unvegetated intertidal consisted of large gravels with barnacles, evidence of a higher-energy environment, and exposure to wave action, particularly on the north end of the study area (Photograph 6B).

Photograph 6. Intertidal Habitats in the Mendenhall Peninsula Study Area

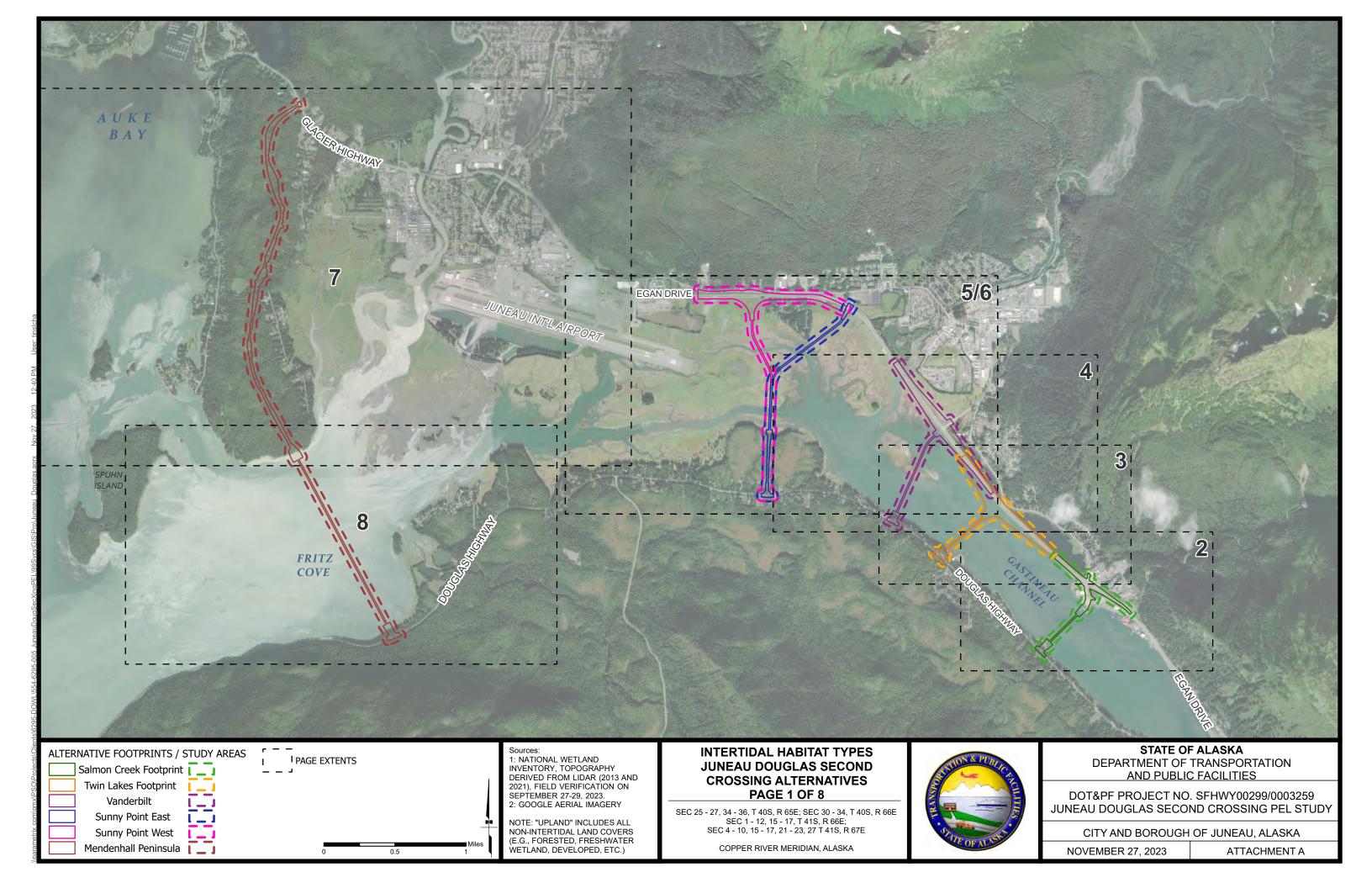
6A (left) Aerial view of the south end of the study area, with the mouth Fish Creek to the left (out of frame) and alternative alignment on the right side of frame. Photo: NOAA ShoreZone
6B (right) Mudflat on Mendenhall Peninsula with rockweed attached to cobble (left), transitioning to a gravel beach with barnacles (right).

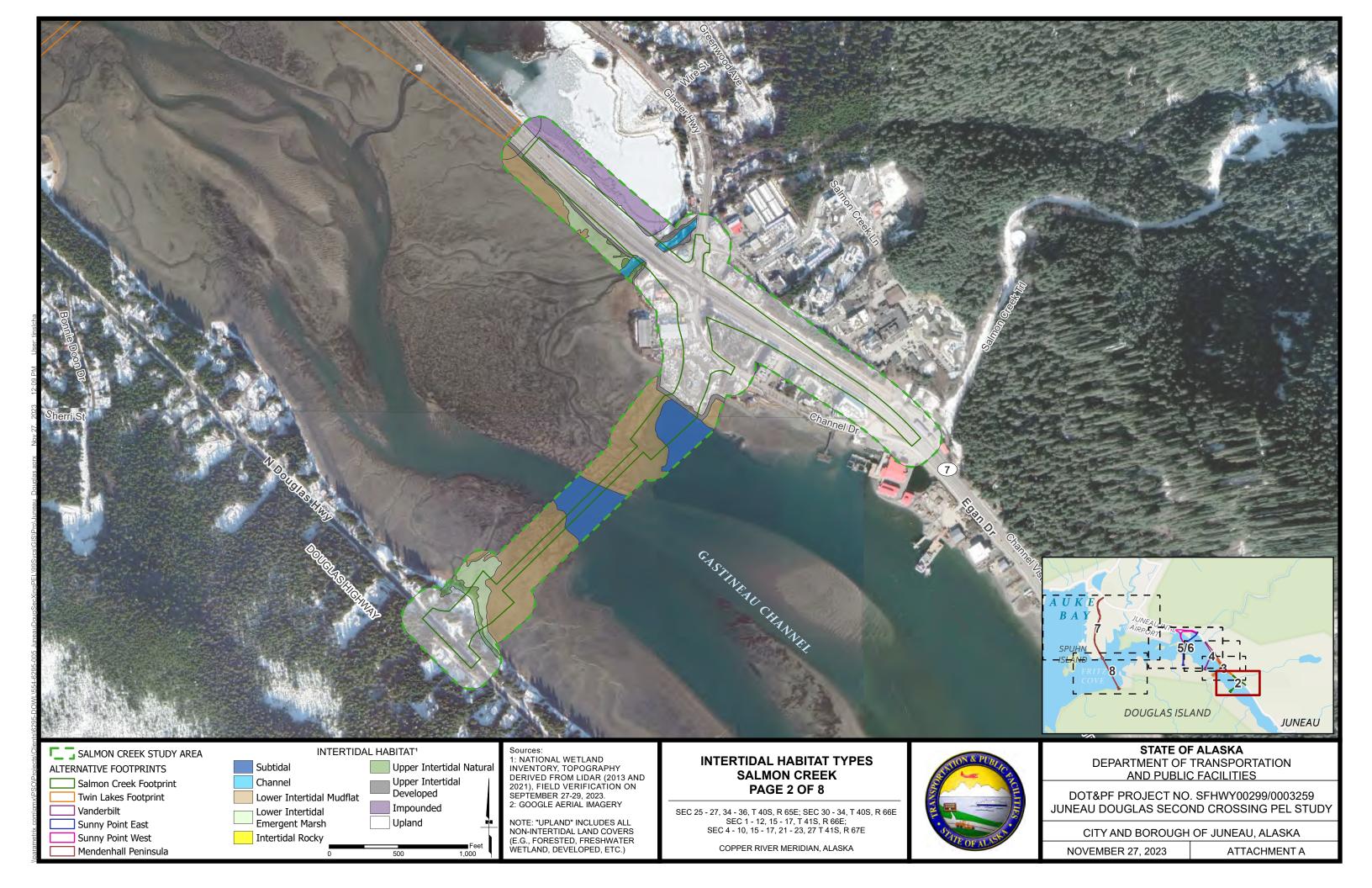
Photo facing west

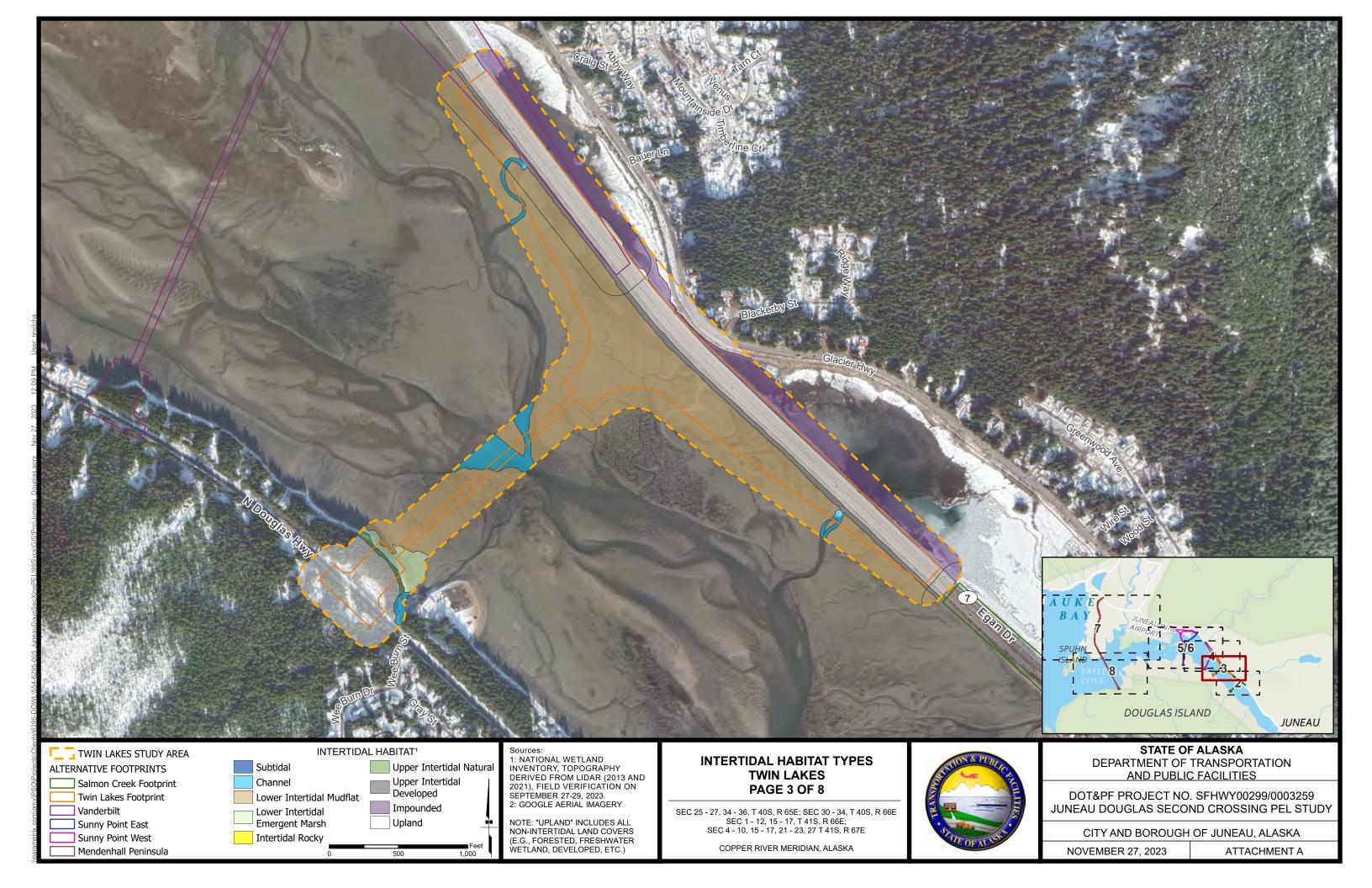
4. Recommendations/Additional Information Needs

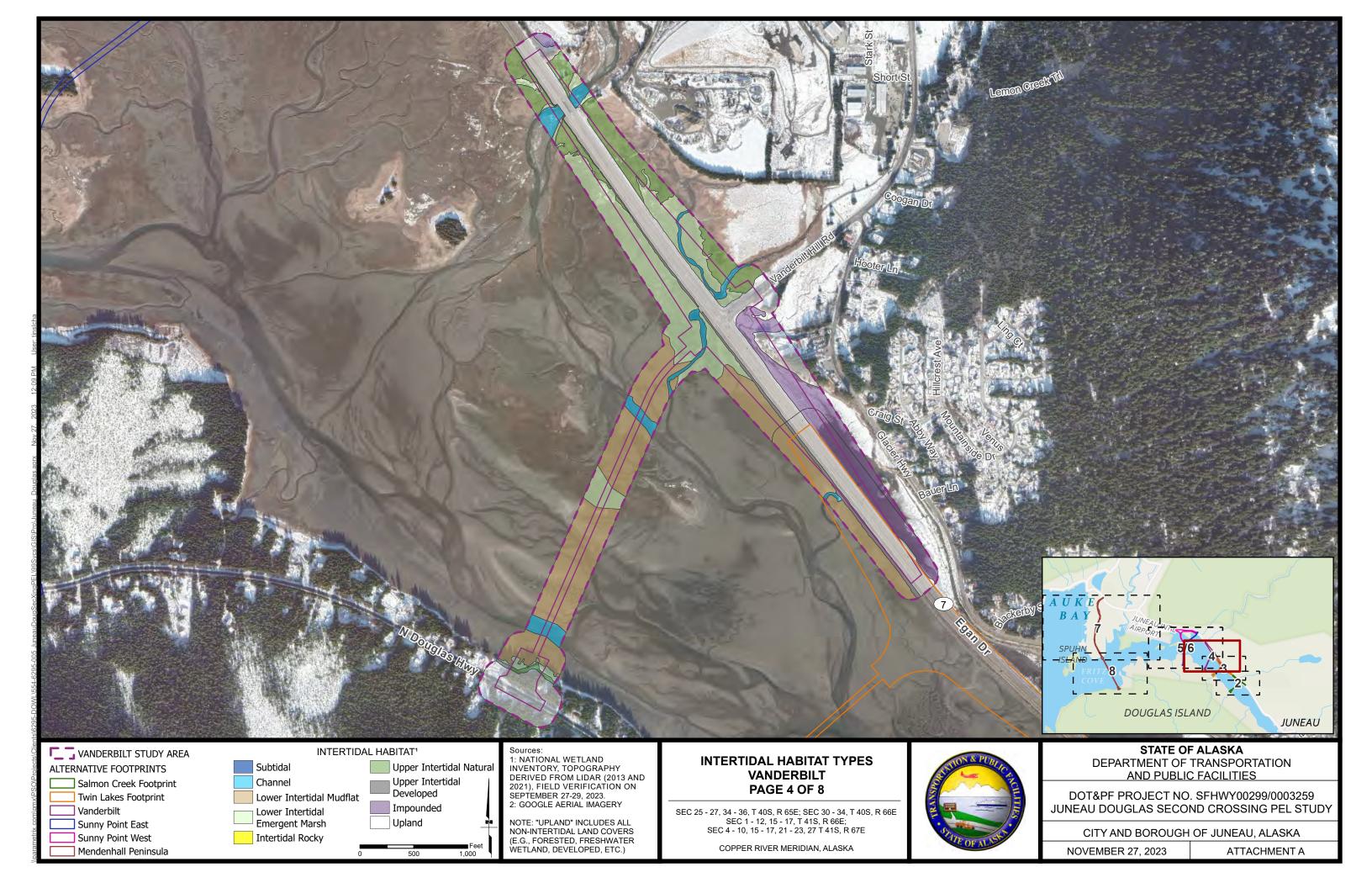
The results of this survey largely confirm information from prior efforts to map intertidal and other types of habitat. Similar to previous studies, this survey effort documents a vertical gradient of habitats based on frequency and duration of inundation, along with a mosaic across the landscape based on proximity to deeper marine water and freshwater sources. Biologists performing the field surveys identified discrepancies between the previously mapped boundaries of these habitat types and those observed in the field. Those differences likely arise both from the application of different methodologies and from the dynamic nature of the intertidal environment, where conditions may change over time and maps must be frequently updated.

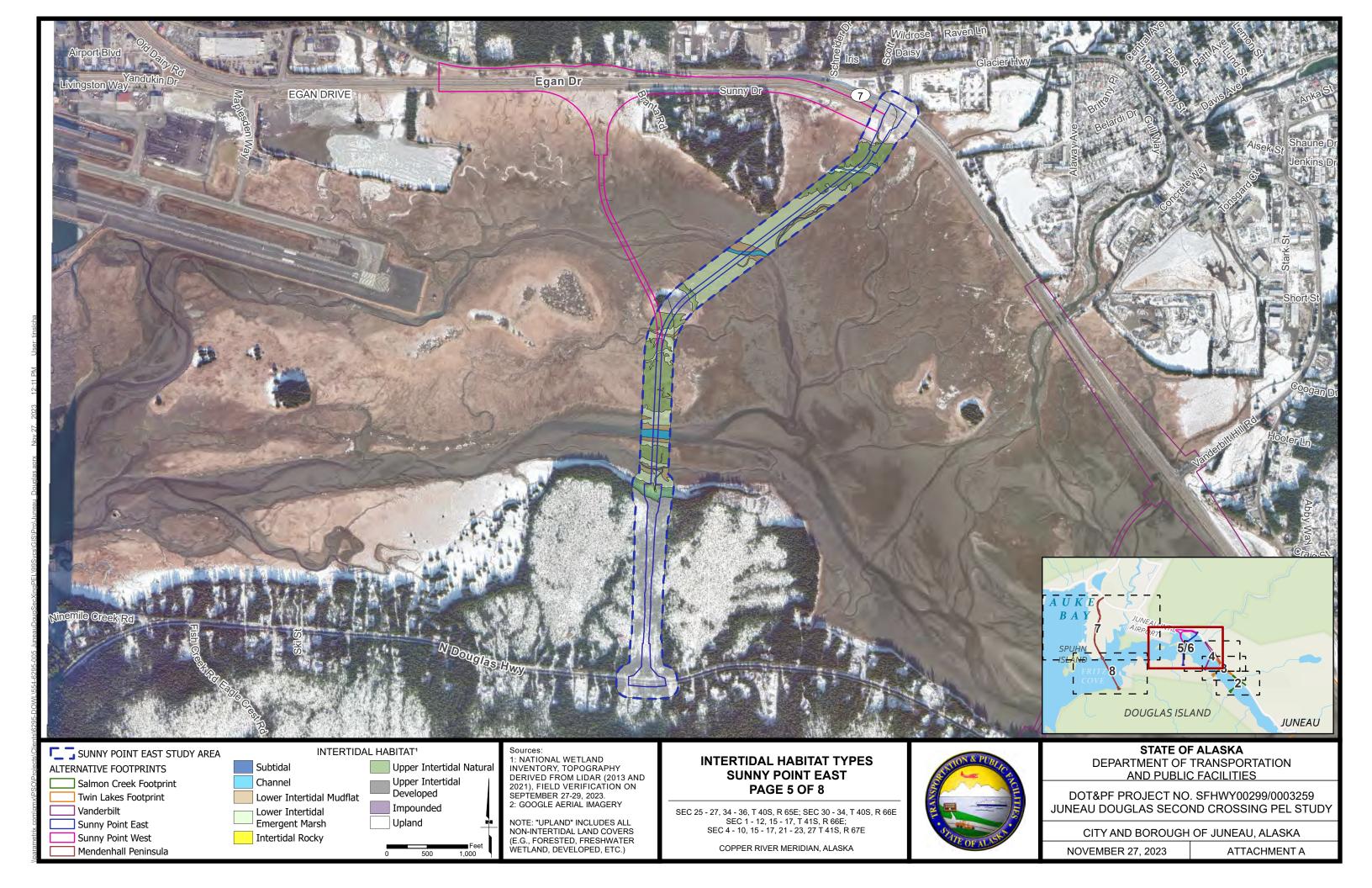
Further refinement of the habitat types into more specific categories may be possible. For example, it may be possible to denote differences in substrates or benthic infauna communities. However, this increased precision may not be useful for decision-making at the landscape level. Any proposed refinement of these habitat types should consider which specific attributes would be useful in distinguishing the potential impacts of the alternatives. Mapping refinements may also be necessary based on changes to the alternative alignments during the design process, consideration of construction methods, and the size of the buffer needed to incorporate all potential impacts.

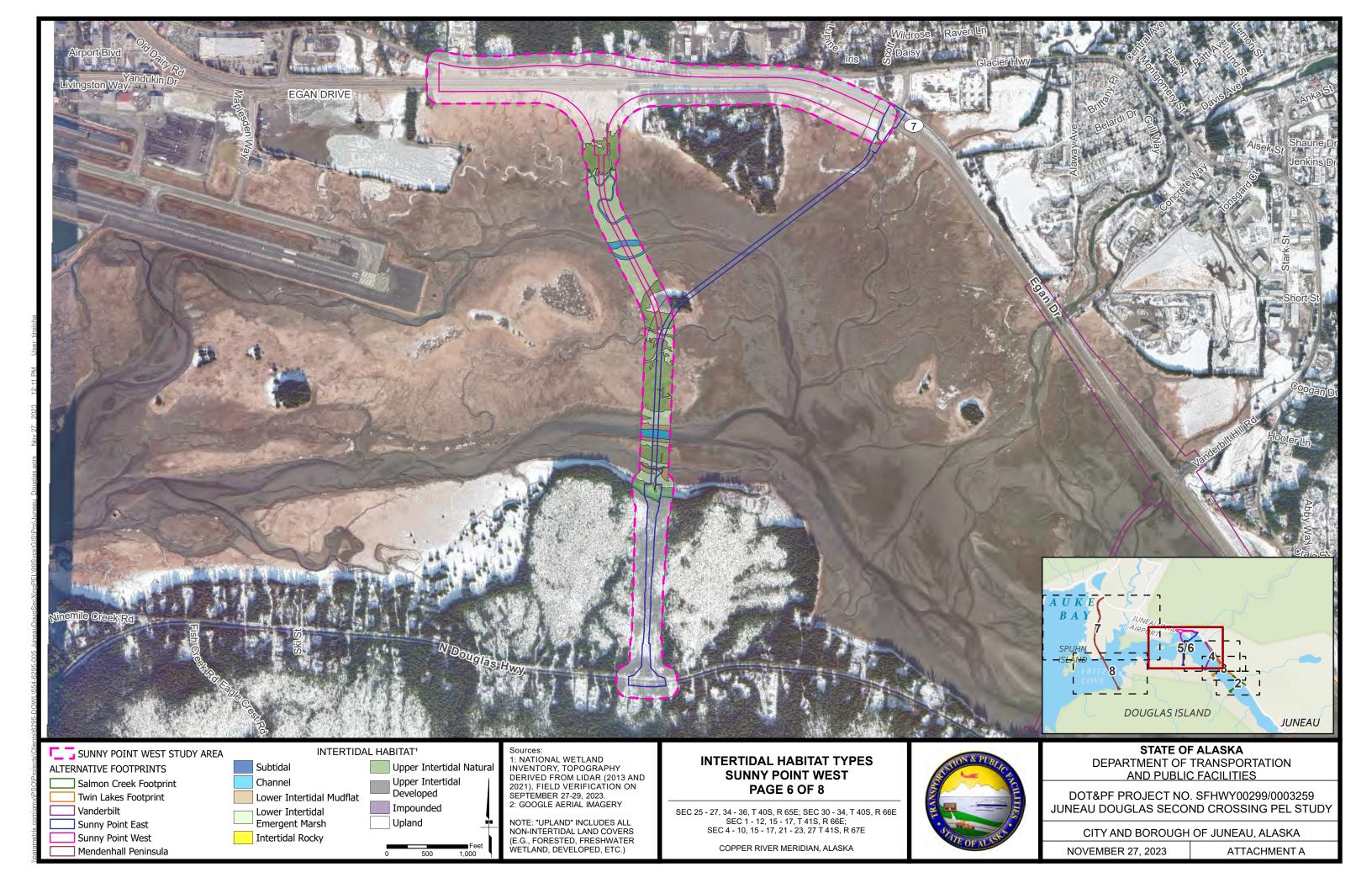

This memo does not provide an analysis of the potential effects on intertidal habitats, nor is it intended to rank or prioritize the alternatives. Such assessments would be performed during the NEPA process, as part of a comprehensive review of the project.

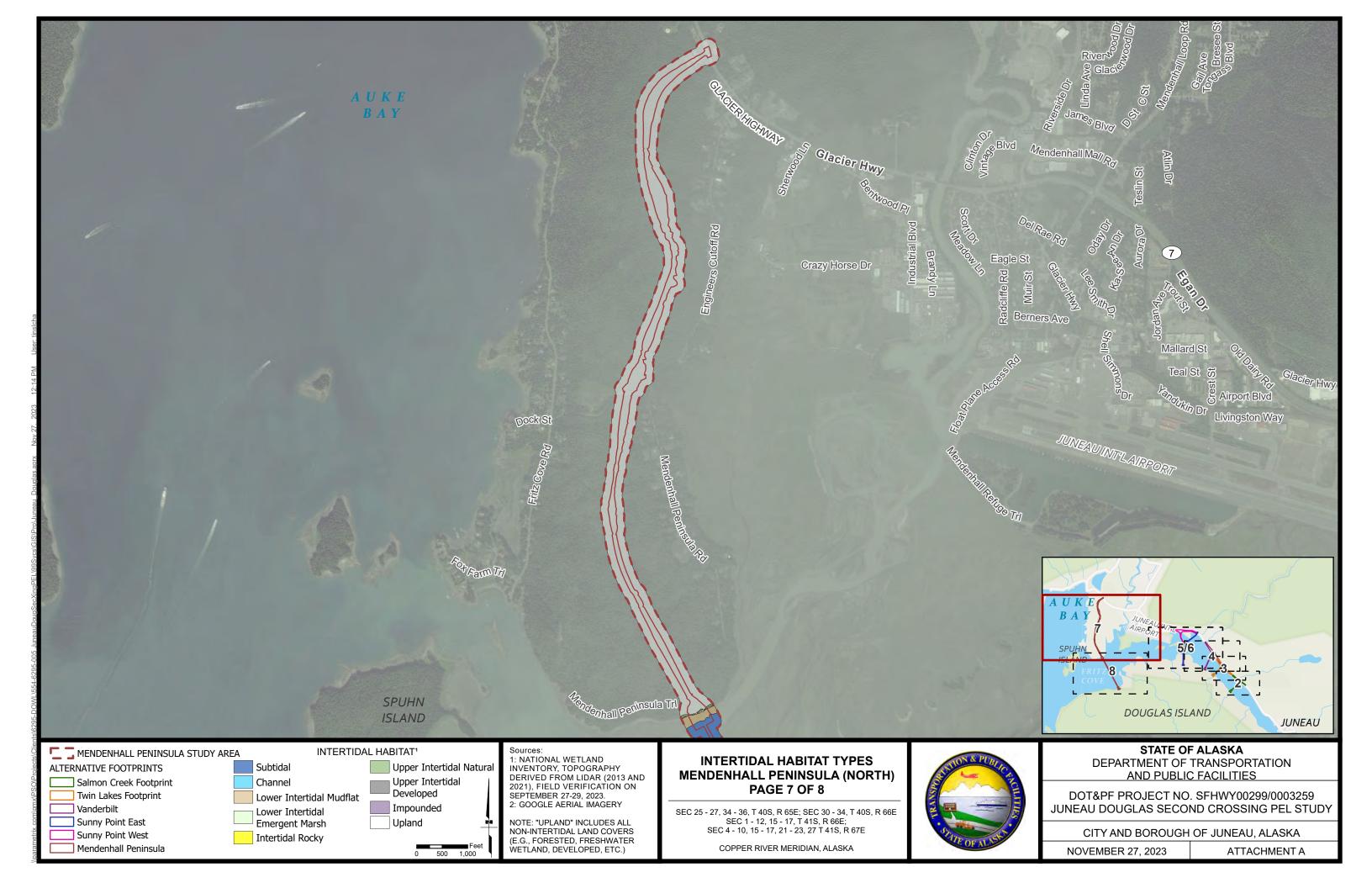

5. References

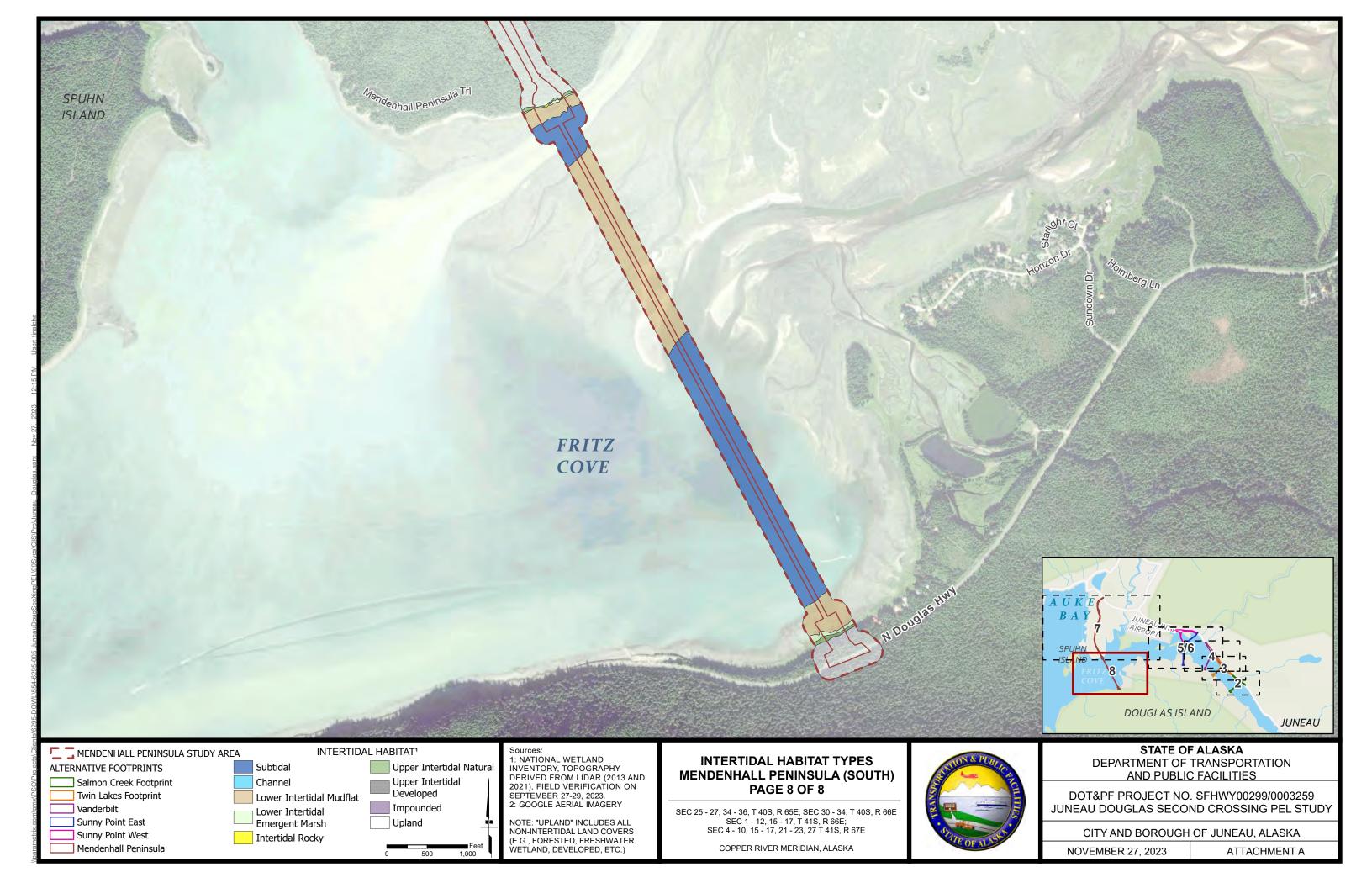

- Beaudreau, A.H., C.A. Bergstrom, E.J. Whitney, D.H. Duncan, and N.C. Lundstrom. 2022. Seasonal and interannual variation in high-latitude estuarine fish community structure along a glacial to non-glacial watershed gradient in Southeast Alaska. Environ. Biol. Fish 105:431-452.
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service, Office of Biological Services. Washington, D.C. FWS/OBS-79/31.
- Federal Aviation Administration and City and Borough of Juneau, Alaska (FAA and CBJ). 2007. Juneau International Airport. Final EIS and Section 4(f) Evaluation.
- HDR Alaska, Inc. 2005. Draft Environmental Impact Statement (DEIS): Project Development Summary Report, Juneau Second Crossing. Prepared for Alaska Department of Transportation and Public Facilities. May 2005.
- Lundstrom, N.C., A.H. Beaudreau, F.J. Mueter, and B. Konar. 2022. Environmental drivers of nearshore fish community composition and size structure in glacially influenced Gulf of Alaska estuaries. Estuaries and Coasts 45:2151-2165.
- Parametrix. 2022. Wildlife and Fish Resources Technical Memorandum for the Juneau Douglas North Crossing PEL Study. April 21, 2022.

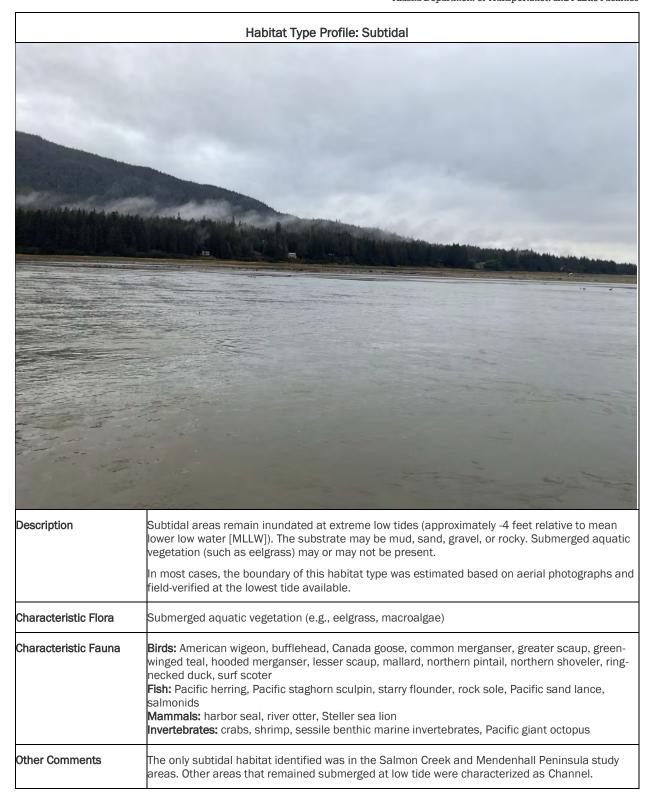

Attachment 1

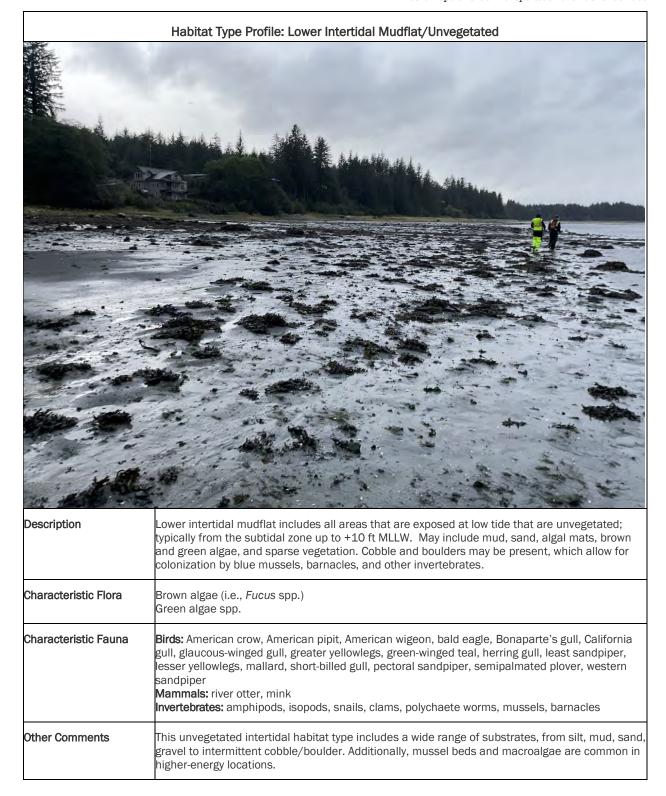

Intertidal Mapbook










Attachment 2

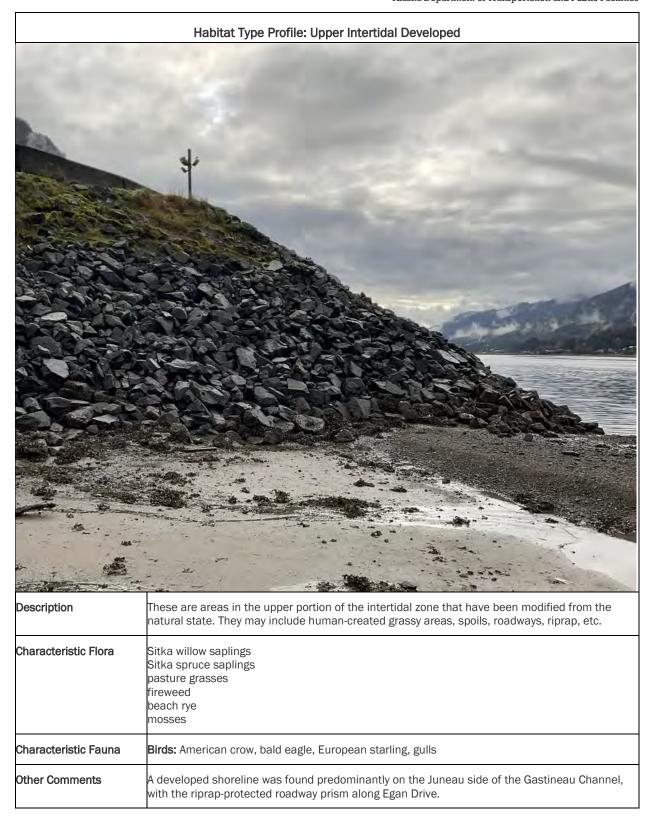
Intertidal Habitat Profiles

	Habitat Type Profile: Channel
Description	Channel areas are above MLLW but remain inundated at low tides due to delayed drainage from tidal or freshwater sources. The substrate may be unvegetated mud, sand, or gravel.
Characteristic Flora	Unvegetated; occasional filamentous algae
Characteristic Fauna	Birds: American crow, American wigeon, bald eagle, Bonaparte's gull, bufflehead, Canada goose, California gull, glaucous-winged gull, green-winged teal, herring gull, mallard, northern pintail, northern shoveler, ring-necked duck, short-billed gull Fish: juvenile flatfish, starry flounder, Pacific sand lance, Pacific staghorn sculpin, snake prickleback, yellowfin sole, salmonids Mammals: river otter Invertebrates: crabs, shrimp, benthic infauna
Other Comments	Channels are found at the mouths of local creeks, where they have been formed by freshwater runoff across the tide flats as well as by depressions within the salt marsh that retain water even at low tide, when most tidal channels or sloughs are dry.

December 2023 | 554-6295-005

Habitat Type Profile: Lower Intertidal Emergent Marsh

Description	These are areas that are frequently inundated but exposed at low tide and are vegetated with vascular plants. Communities may include Pacific alkali grass, goosetongue, and Lyngbye's sedge. These are typically found between approximately +10 ft MLLW to +16 ft MLLW (the mean higher high water [MHHW] elevation is 16.3 ft).
Characteristic Flora	Lyngbye's sedge (Carex lyngbyei) arrowgrass (Triglochin maritimum) beach rye (Leymus mollis) Canadian sandspurry (Spergularia canadensis) Gmelin's saltweed (Atriplex gmelinii) goosetongue (Plantago maritima) low chickweed (Stellaria humifusa) Pacific alkali grass (Puccinellia nutkaensis) sea milkwort (Glaux maritima) seabeach sandwort (Honckenya peploides) seablite (Suaeda calceoliformis) silverweed (Potentilla anserina)
Characteristic Fauna	Birds: American pipit, Canada goose, dabbling ducks (e.g., mallard, green-winged teal), dunlin, great blue heron, greater white-fronted goose, gulls, merlin, northern harrier, swans, whimbrel Fish: salmonids, sculpins, sticklebacks


The upper extent of Lyngbye's sedge typically denotes the break between low and high marsh.

Mammals: black bear, river otter, mink

Other Comments

Habitat Type Profile: Intertidal Rocky These are areas of rocky or hard substrate anywhere within the intertidal zone. Description Characteristic Flora Lyngbye's sedge (Carex lyngbyei) beach rye (Leymus mollis) mosses lichens Characteristic Fauna Birds: American crow, black oystercatcher, common raven, great blue heron, plovers, ruddy turnstone, sandpipers, surfbird Invertebrates: barnacles, chitons, isopods, limpets, sea stars, snails This habitat type was only observed in the Mendenhall Peninsula study area, although isolated boulders within the mudflats and riprap can function similarly in other study areas. Other Comments

	Habitat Type Profile: Upper Intertidal Natural
Description	These are areas in the upper portion of the intertidal zone that have established vegetation communities. They may include beach rye, coastal grass meadow, coastal forb meadow, reed canarygrass. They are typically found above MHHW elevation.
Characteristic Flora	beach rye beach pea cow parsnip fireweed foxtail barley hemlock parsley kneeling angelica Lyngbye's sedge Nootka lupine red fescue tufted hairgrass yarrow
Characteristic Fauna	Birds: American crow, American kestrel, American pipit, greater white-fronted goose, Lapland longspur, merlin, northern harrier, short-eared owl, snow goose
Other Comments	Mammals: black bear, long-tailed vole, mink, river otter, Sitka black-tailed deer This habitat type begins immediately above the Lyngbye's sedge community and extends to the upper limits of tidal influence.

TIER 1 EELGRASS DELINEATION REPORT

Juneau Douglas North Crossing PEL Study

1138.63234.01

Prepared for:

Alaska Department of Transportation and Public Facilities South Coast Region 6860 Glacier Highway Juneau, AK 99811

Prepared by:

DOWL 5015 Business Park Blvd Suite 4000 Anchorage, AK 99503

FEB 2024

TABLE OF CONTENTS

APPI	ENDICES	.
1.0	INTRODUCTION 1.1 Study Area 1.2 Previous Investigations	.1
2.0	METHODS	2
3.0	RESULTS	3
4.0	DISCUSSION	4
5.0	REFERECES	5
Photos	OTO SETS set 1: Location on south end of the proposed Salmon Creek Alignment,	.4
Table :	1: Project Location within the Copper River Meridian 2: Alignment Traverse and Tide Stage 3: Eelgrass Survey Summary of Findings	.3

APPENDICES

Figures

1.0 INTRODUCTION

The City and Borough of Juneau has partnered with Alaska Department of Transportation and Public Facilities to explore a north crossing between Juneau and Douglas Island, north of the existing Douglas Island Bridge. DOT&PF has chosen the Planning and Environmental Linkage (PEL) process to evaluate the purpose and need for a north crossing, identify potential north crossing alternatives, evaluate the alternatives, and identify recommended crossing(s). In support of the evaluation of alternatives environmental data is being collected to understand potential impacts of six proposed alternatives. One study being undertaken to collect current data on proposed alternatives is a wetland delineation.

1.1 Study Area

The study area is within six potential crossing alignments: Mendenhall Peninsula, Sunny Point West, Sunny Point East, Vanderbilt, Twin Lakes, and Salmon Creek. The study area encompasses a 150-foot buffer zone for each of six potential proposed bridge alignments across Gastineau Channel (Figure 1).

The approximate 695.5 study area includes the tidally influenced Gastineau Channel between Douglas Island and mainland Juneau, Alaska. The Mendenhall Wetlands State Game Refuge (MWSGR) is located between Juneau and Douglas from the Mendenhall Peninsula to approximately the intersection of Glacier Highway and Channel Drive. The beginning of the project is located 58.341963 North Latitude; -134.628022 West Longitude and the end of the project is located at 58.299292 North Latitude; -134.429609 West Longitude, Copper River Meridian, see Table 1 for Township, Range, Section (Figure 1).

Township	Range	Sections
40 South	65 East	25, 26, 27, 34, 36
40 South	66 East	30, 31, 32, 33, 34

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17

Table 1: Project Location within the Copper River Meridian

1.2 Previous Investigations

41 South

66 East

Biological mapping units were acquired from the National Oceanic and Atmospheric Administration National Marine Fisheries Service's ShoreZone website. Patchy eelgrass is mapped on the south shore of the Salmon Creek crossing (Figure 1).

2.0 METHODS

Each proposed crossing alternative was traversed and photo points were used to document representative locations of the traversed area and document the presence or absence of eelgrass. Photos of the substrate were taken to document whether the conditions were appropriate for eel grass growth. Areas were not traversed if during the survey the area was under greater than one foot of water or was unconsolidated mud. As eelgrass was identified, a Tier 1 Delineation Survey (USACE, 2018) was conducted to define and delineate eelgrass bed boundaries. The survey identified eelgrass boundaries, spatial distribution (continuous or patchy), and relationship to tidal elevation(s). Density of eelgrass beds is not part of this survey and a more detailed survey may be needed prior to initiation of the Project.

Eelgrass bed boundaries were identified using Method B (eelgrass within one square meter quadrat and within one meter of another shoot); for small beds (i.e., contained within the alignment buffer zone) the perimeter of the bed would be mapped, for large beds (i.e., extending outside of the alignment buffer), beds would be mapped using transects (spaced between three and twelve meters). Geo-referenced photographs were taken of all identified eelgrass beds. If individual eelgrass beds were spaced less than sixteen feet (five meters) apart, each individual bed will not be delineated. However, mapping will identify the outer boundaries of these discontinuous beds and identify it as a patchy eelgrass bed. In areas where there are too few eelgrass shoots to meet the bed threshold, then a note in the report will indicate eelgrass is present, but no discernable beds.

Data collection was conducted per US Army Corps of Engineers *Components of a Complete Eelgrass Delineation Report*.

3.0 RESULTS

The eelgrass survey was conducted by David DeKrey and Tad Schwager September 27th through 29th, 2023. Survey activities were conducted during daylight hours within four hours of low tide (typical range between -0.27 and +6.15 reference mean low low water). Each proposed bridge alternative was traversed to approximate mean low low water (Table 1).

Table 2: Alignment Traverse and Tide Stage

Alignment	Date (2023)	Start Time	End Time	Tide Stage
Mendenhall	September 28	6:01 PM	6:48 PM	Ebb
Wendennan	September 29	5:12 PM	6:06 PM	Ebb
Sunny Point West	September 29	9:23 AM	10:51 AM	Flow
Sunny Point East	September 29	10:09 AM	12:09 PM	Flow
Vanderbilt	September 27	5:40 PM	5:48 PM	Ebb
	September 28	8:16 AM	9:05 AM	Flow
Twin Lakes	September 28	7:06 AM	8:03 AM	Flow
TWIII Lakes	September 27	6:01 PM	~6:29 PM	Ebb
Salmon Creek	September 27	~6:29 PM	6:40 PM	Flow
Salmon Greek	September 28	9:06 AM	10:01 AM	Flow

Only one location documented "dwarf" eelgrass *Zostera japonica* outside the study area (approximately 25 feet) on the south side of the Salmon Creek alternative (Table 3, Photo Set 1, and Figure 2).

Table 3: Eelgrass Survey Summary of Findings

Site Name	Date	Time	Tide Stage	Approximate Contour (feet)	
EG1	9/27/2023	6:25 PM	Ebb Current	0.3	Yes

Photo Set 1: Location on south end of the proposed Salmon Creek Alignment

Note: Left photo view is oriented toward the northeast across the Eelgrass bed, and right photo view is oriented down on the Eelgrass bed

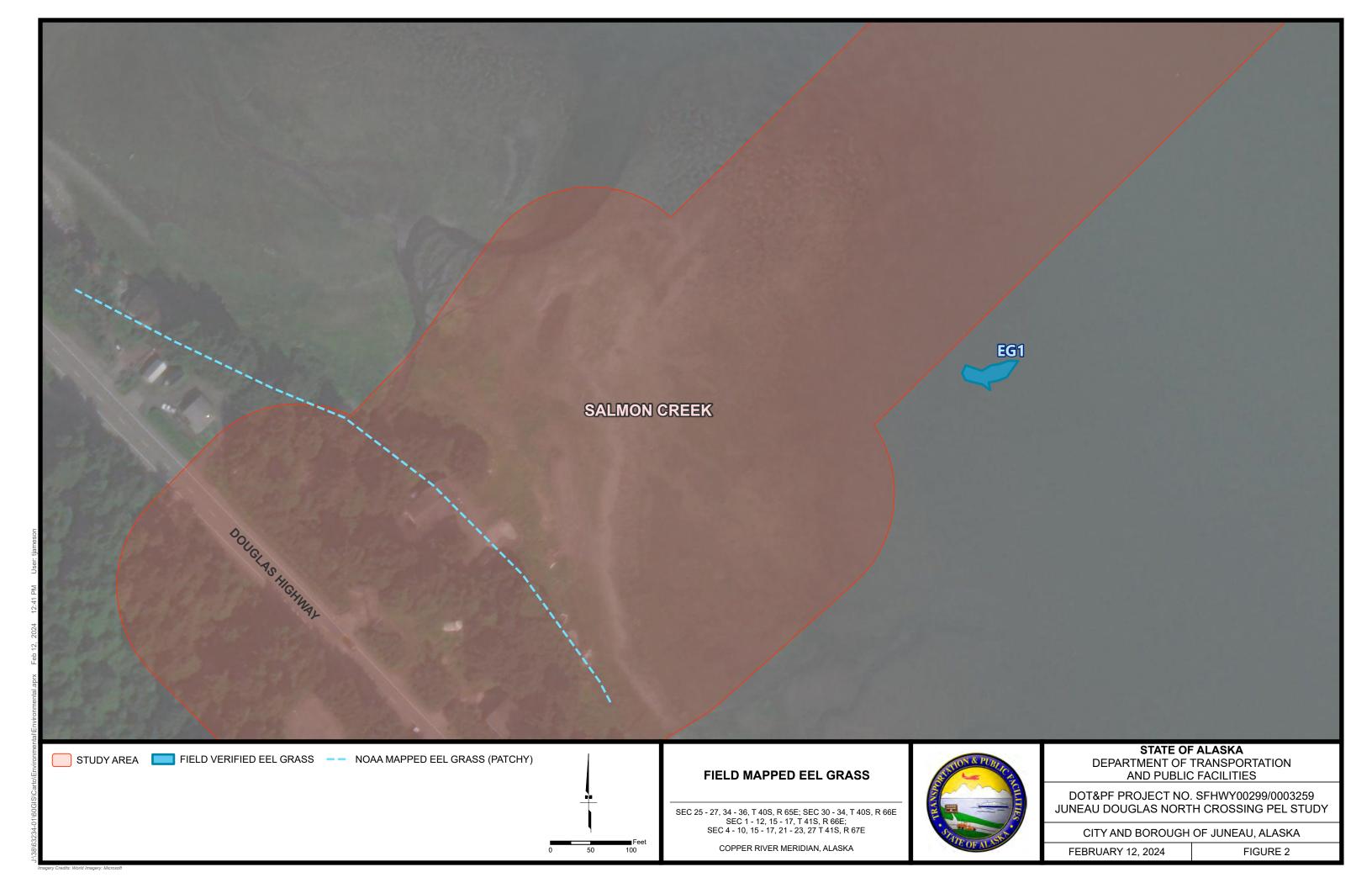
4.0 DISCUSSION

The National Oceanic and Atmospheric Administration Alaska ShoreZone Mapping (NOAA, 2023) has mapped patchy eelgrass on the south shore near the Salmon Creek alignment. No eelgrass was previously identified at any of the alignments between 2004 and 2011 (Harris et al., 2008, Harris et al., 2012). Based on these previous surveys and the survey conducted in 2023, the proposed alignments are absent the presence of eelgrass. However, the proposed Salmon Creek alignment is adjacent to a patchy eelgrass bed. Changes in the project may require additional eelgrass survey on the southside of the proposed Salmon Creek alignment.

5.0 REFERECES

Harris, P.M., A.D. Neff, S.W. Johnson, and J.F. Thedinga. 2008. *Eelgrass habitat and faunal assemblages in the City and Borough of Juneau, Alaska*. U.S. Department of Commerce, National Oceanic and Atmospheric Administration Technical Memorandum NMFS-AFSC-182, page 46.


Harris, P.M., A.D. Neff, S.W. Johnson. 2012. *Changes in eelgrass habitat and faunal assemblages associated with coastal development in Juneau, Alaska*. U.S. Department of Commerce, National Oceanic and Atmospheric Administration Technical Memorandum NMFS-AFSC-240, page 47.


National Oceanic and Atmospheric Administration. 2023. *Alaska ShoreZone Mapping Website*. https://alaskafisheries.noaa.gov/mapping/sz/ Accessed August 29, 2023.

U.S. Army Corps of Engineers. 2018. Components of a Complete Eelgrass Delineation Report.

FIGURES

TECHNICAL MEMORANDUM

TO: Greg Lockwood, PE

FROM: David Barrick, PE, and Chloe Jungwirth, EIT

DATE: June 5, 2024

PROJECT: Juneau Douglas Second Channel Crossing, Juneau, Alaska.

DOT&PF Project Numbers: SFHWY00299/0003259 DRAFT Geophysics Data Summary Memorandum

This memorandum provides subsurface data from eight seismic and two electrical resistivity transects collected during our geophysical exploration conducted February 13 through 17, 2024.

Purpose and Scope of Work

The City and Borough of Juneau has partnered with Alaska Department of Transportation and Public Facilities (DOT&PF) to explore a north crossing between Juneau and Douglas Island, north of the existing Douglas Island Bridge. DOT&PF has chosen the Planning and Environmental Linkage (PEL) process to evaluate the purpose and need for a north crossing, identify potential north crossing alternatives, evaluate the alternatives, and identify recommended crossing(s). In support of the evaluation of alternatives environmental data is being collected to understand potential impacts of six proposed alternatives. One study being undertaken to collect current data on proposed alternatives is a seismic investigation. The seismic investigation intends to provide an understanding of bedrock depth within the proposed second connections crossing Gastineau Channel between mainland Juneau and Douglas Island. Geophysical data was collected on five proposed crossing alternatives: Salmon Creek, Twin Lakes, Vanderbilt, Sunny Point East, and Sunny Point West.

Field Investigation

The seismic data collection transects extended inward toward the channel center from approximately each proposed crossing abutments. Eight of the nine proposed abutments underwent seismic data collection. Data was not collected at the south abutment of the Twin Lake crossing as access along public property was deemed unsafe. The geophysical transects were "field-fit" to maximize data collection while considering the efficiency of equipment, cable, and geophone placement. Seismic transect performed on the Juneau side crossings produced data considerably noisier than that of the Douglas side crossings due to the vehicular traffic on Egan Drive.

DOWL performed eight seismic transects ranging from 225 feet to 600 feet in length, as shown in the data collection location map in Appendix A. General information for each seismic transect are provided in Table 1. Two seismic data collection methodologies were implemented along each transect: the Multichannel Analysis of Surface Waves (MASW) and seismic refraction methods. The seismic refraction data were collected in general accordance with ASTM D5777-18, Standard Guide for Using the Seismic Refraction Method for Subsurface Investigations. Electrical resistivity was performed at select sites to supplement the seismic data.

Table 1: Summary of Seismic Transects

Seismic Transect	Transect Length (feet)	Transect Start (latitude & longitude)	Transect End (latitude & longitude)	Description
West Sunny Point North	600	58° 21' 29.60" N 134° 32' 11.20" W	58° 21' 23.76" N 134° 32' 10.75" W	Juneau Abutment North-South Alignment
East Sunny Point North	600	58° 21' 26.99" N 134° 31' 17.52" W	58° 21' 21.20" N 134° 31' 15.52" W	Juneau Abutment North-South Alignment
Sunny Point South	225	58° 20' 42.91" N 134° 32' 11.75" W	58° 21' 44.92" N 134° 32' 9.98" W	Douglas Abutment South-North Alignment
Vanderbilt North	300	58° 20' 41.46" N 134° 30' 2.66" W	58° 20' 38.91" N 134° 30' 5.13" W	Juneau Abutment Northeast- Southwest Alignment
Vanderbilt South	300	58° 20' 10.83" N 134° 30' 37.82" W	58° 20' 13.64" N 134° 30' 35.10" W	Douglas Abutment Southwest- Northeast Alignment
Twin Lakes North	300	58° 20' 11.50" N 134° 29' 16.16" W	58° 20' 9.32" N 134° 29' 19.87" W	Juneau Abutment Northeast- Southwest Alignment
Salmon Creek North	300	58° 19' 40.73" N 134° 28' 15.37" W	58° 19' 38.00" N 134° 28' 17.62" W	Juneau Abutment Northeast- Southwest Alignment
Salmon Creek South	300	58° 19' 23.64" N 134° 28' 49.51" W	58° 19' 25.33" N 134° 28' 45.05" W	Douglas Abutment Southwest- Northeast Alignment

Implementation of seismic recording parameters was dictated by site conditions and varied along each transect. In some cases, surface conditions are prohibited using standard recording equipment such as a spike geophone. In these cases, geophones were placed on plates in contact with the ground surface. Example site conditions are shown in Site Photograph 1.

Site Photograph 1: Seismic Transect Sunny Point North – View North

DOWL performed two electrical resistivity transects ranging from 617 feet to 771 feet in length at the West Sunny Point North and East Sunny Point North locations. General information for each electrical resistivity transect is provided in Table 2. DOWL collected the electrical resistivity data in general accordance with ASTM D6431-18, Standard Guide for Using the Direct Current Resistivity Method for Subsurface Site Characterization.

Table 2: Summary of Electrical Resistivity Transects

rabio in Cammary of Electrical Recientity Transcote				
Resistivity Transect	Transect Length (feet)	Transect Start (latitude & longitude)	Transect End (latitude & longitude)	Description
West Sunny Point North	771	58° 21' 29.60" N 134° 32' 11.20" W	58° 21' 22.02" N 134° 32' 10.64" W	Juneau Abutment North-South Alignment
East Sunny Point North	617	58° 21' 26.99" N 134° 31' 17.52" W	58° 21' 21.02" N 134° 31' 15.47" W	Juneau Abutment North-South Alignment

Seismic Data Collection

The seismic source (shot) or energy introduced into the ground was initiated by a 16-pound sledgehammer striking a plate on the ground surface. Four hammer hits were used at each shot location and summed to reduce background ambient noise. Sixteen shot locations were implemented along each profile. Shot spacings were determined based on subsurface ray path coverage suitable for seismic refraction tomography (SRT) and subsequent use in MASW analysis. Seismic survey parameters used for all data collection transects are summarized in Table 3.

Table 3: Seismic Survey Parameters

	Tuble of Colonia Curvey Furamotore			
Recording Instrument	Geometrics Geode			
Geophone Natural Period	4.5 Hertz			
Number of Geophones	24			
Sample Rate	0.250 millisecond			
Number of Samples	6,000 per channel			
Record Length	1.5 seconds			
Low Cut Filter	Out			
High Cut Filter	Out			
Seismic Source 16-pound sledgehammer				
Stack Number	4			
Refraction Analysis	Rayfract®			
Software	i tayii dote			
Surface Wave Analysis	SeisImagerSW™ Geometrics, Inc. MASW 1D			
Software Surface Wave Wizard/Geoplot Geometrics, Inc. MAS				

Electrical Resistivity Data Collection

Electrical Resistivity Tomography (ERT) data is collected by inserting 48 3/8-inch metal electrodes in the ground in an array and injecting a low-voltage direct current. The electrical method estimates the depth of bedrock via an electrical resistivity inversion of the field data when a contrast of conductivity of the bedrock and overlying sediment is present. Electrical resistivity survey parameters used for all data collection transects are summarized in Table 4.

Table 4: Electrical Resistivity Survey Parameters

<u>, , , , , , , , , , , , , , , , , , , </u>
ABEM Terrameter LS2
48
Gradient
1%
1.5 seconds
4
ABEM Toolbox®
Res2Dinv®

Seismic Analysis

Seismic Refraction Method

The seismic refraction method calculates subsurface compressional wave velocity (Vp). This approach uses seismic *body* waves, contrasting with the MASW method, which uses seismic *surface* waves.

Using the same first arrival times, a tomographic solution can be calculated by discretizing the subsurface into cells instead of layers. The tomographic approach thus lends itself to characterizing laterally variable subsurface media.

MASW Method

The MASW method provides a shear wave velocity (V_s) result as a 1D profile located at the center of the geophone spread layout. Optimal MASW data collection requires the seismic source (shots) to be offset from the nearest geophone, ideally ranging between 10 to 30 percent of the geophone spread length. Thus, shots taken inside the geophone spread will not give accurate results for MASW analysis.

MASW uses the velocity dispersion characteristics of the high amplitude surface wave (Rayleigh wave) to calculate V_s with depth. SeisImagerSW software was used for MASW analysis. Seismic Site Classifications per AASHTO LRFD Table 3.10.3.1-1 for each transect are presented in Appendix B.

2D MASW profiles are presented in Appendix B. 2D MASW uses Common-Mid-Point (CMP) gathers to generate shear wave velocities. Although the 2D s-wave velocity profiles resemble discretized velocity models, the 2D profiles are formed from 1D s-wave velocity profiles calculated at two times the geophone spacing. The starting model was set to 12 layers for the calculations. Thus, the resolution of the MASW 2D model is twice the geophone spacing horizontally and 12 layers vertically, resulting in a coarser resolution than SRTs. The figures are the gridded and contoured results from the individual 1D s-wave depth velocity profiles.

Seismic Interpretation

Interpretations of the seismic data are presented as eight sites in Appendix B. The seismic profiles represent the corresponding calculated 2D SRTs of compressional wave velocity (Vp) and 2D (MASW) tomograms. The 2D MASW tomograms had a consistent color banding ranging from 277 to 4,473 feet per second with an interval of 155 feet per second.

Appendix B contains 1D shear wave velocity profiles with converted standard penetration test values (i.e., n-values) calculated from the s-wave velocity profiles using the equation below. The 1D s-wave velocity profiles show calculated n-values as a red line with a legend at the top of the figure. There are other penetration test to shear wave velocity correlations and the correlations do vary. Use blow count profiles converted from shear wave velocities with caution.

$$n = 10^{\left[\frac{1}{0.314} \times \log_{10}\left(\frac{Vs}{318.241}\right)\right]}$$

Where:

n = blow count Vs = shear wave velocity in feet/second

The approximate depth to bedrock or dense or very dense sediment was estimated within each seismic profile. Seismic profiles along the northern abutments are interpreted to encounter dense sediment based on correlations from the nearest available geotechnical test holes. Existing data from the following reports were used in the correlation:

• DOT&PF. 1970. Lemon Creek Bridge. Project No.: F-095-8. Test hole and penetrometer data documents dense to very dense sand with some silt and trace gravel was encountered between 80 to 100 feet below ground surface.

• DOT&PF. 1970. Salmon Creek Bridge. Project No.: F-095-8(3). Test hole data documents hard silt and very dense sand with gravel encountered at 50 feet below ground surface.

Bedrock in the region is mapped as layered greenstone, graywacke, slate, greenschist, and metavolcanic flow breccia that were formed mainly during the Mesozoic age (Miller, 1975). Along the southern abutments, bedrock is exposed at the surface or encountered at shallow depths in the following report:

• DOT&PF. 1979. Kowee Creek Bridge. Project No.: S-0959(10). Test hole data documents phyllitic slate bedrock encountered 10 to 14 feet below ground surface.

Bedrock and dense sedimentary material depth was estimated based on test hole data from the previously listed reports, known correlations of seismic velocities for bedrock and dense sediments, and spacing of seismic tomogram contours. For SRT, the compression wave velocities for bedrock are typically greater than 3,000 feet per second. Compression wave velocities larger than 10,000 feet per second indicate competent bedrock. The topography elevations used for the tomograms were taken in the field using a Bad Elf GPS.

The shear wave velocities for geomaterials are typically 40 to 60 percent of the compression wave velocities if there is no groundwater table. If there is a groundwater table, the shear wave velocities are approximately 20 percent of the compression wave velocity. Groundwater does not impact the shear wave velocities as water has no shear strength. In geotechnical engineering terms, compression waves can be regarded as a total stress parameter as they tend to induce volume change, and their propagation velocity in saturated soil is practically identical to that of compression waves in water. Shear waves impose only shear deformation, and the velocity can be considered an effective stress parameter.

DOWL researched published representative p-wave velocities to interpret depths to bedrock or dense sediment below the existing ground surface. Since the data was collected in a tidal flat environment, DOWL assumed that the ground is saturated at the surface. Table 5 lists published seismic wave velocities for various materials (Press, 1966). Shear wave velocities were calculated and tabulated based on the following rule-of-thumb relationships (Burger, Sheehan, and Jones, 2006):

- Vs = 0.6Vp for crystalline rocks
- Vs = 0.5Vp for sedimentary rocks
- Vs = 0.4Vp for soils and unconsolidated sediment materials.

Table 5: Range of Seismic Velocities (feet per second)

Unconsolidated Materials			Competent Bedrock (no groundwater)		
	P-wave	S-wave		P-wave	S-wave
	<u>Velocities</u>	Velocities*		<u>Velocities</u>	<u>Velocities*</u>
Alluvium	1,640-6,560	660-2,620	Granite	16,400- 19,680	9,840-11,810
Clay	3,610-8,200	1,440-3,280	Basalt	17,710- 20,990	10,630-12,600
Unsaturated Sand	660-3,280	262-1,310	Metamorphic Rocks	11,480- 22,960	6,890-13,780
Saturated Sand	2,620-7,220	262-1,310	Sandstone and Shale	6,560-14,760	3,280-7,380
Unsaturated Sand and Gravel	1,310-1,640	525-660	Limestone	6,560-19,680	3,280-9,840
Saturated Sand and Gravel	1,640-4,920	525-660	Non-geomaterials		
Unsaturated Glacial Till	1,310-3,280	525-1,310		<u>P-wave</u> <u>Velocities</u>	<u>S-wave</u> <u>Velocities</u>
Saturated Glacial Till	5,580	525-1,310	Water	4,592-5,248	N/A
Very Dense Glacial Till	3,940-6,890	1,574-2,760	Air	1,087	N/A

^{*}S-waves were calculated using the rule of thumb listed above.

Velocities are in feet per second and converted from published meters per second.

As shown in Table 5, saturated unconsolidated material or sediment has a higher p-wave velocity range than unsaturated sediments. However, s-wave velocities don't change with the presence of groundwater. From the interpretation of published data and DOWL's experience comparing seismic velocities to known ground truths, DOWL used a p-wave velocity range of 7,000 to 9,000 feet per second and an s-wave velocity range of 1,300 to 1,700 feet per second as the threshold for what is interpreted to be a consolidated geomaterial. However, there is nuance when interpreting the geophysics profiles, especially in complex geological environments.

Seismic Line Summary

The following descriptions provide a summary of each seismic line and an interpretation of the estimated depth to bedrock or very dense sedimentary material. As there is uncertainty on if the interpreted strata are bedrock or very dense sedimentary material without ground-truth test hole data, the materials are referred to as consolidated geomaterials in the following descriptions and the figures within Appendix B.

Table 6: Seismic Line Summary

Seismic Transect	Depth to Interpreted Consolidated Geomaterial – SRT (feet below ground surface)	Depth to Interpreted Consolidated Geomaterial – MASW 2D (feet below ground surface)
West Sunny Point North	75 – 90	75 – 90
East Sunny Point North	35 – 45	35 – 45
Sunny Point South	25 – 30	25 – 30
Vanderbilt North	25 – 40	35 – 50
Vanderbilt South	15 – 30	20 – 35
Twin Lakes North	70 – 75	75 – 85
Salmon Creek North	55 – 65	55 – 65
Salmon Creek South	35 – 55	35 – 55

Seismic Line - West Sunny Point North

West Sunny Point North is on the Juneau side of the proposed crossing, oriented on a north-south axis and approximately perpendicular to Egan Drive. The SRT and the MASW 2D profiles agree well. Consolidated geomaterials were observed at depths of 75 to 95 feet. The consolidated geomaterials slope towards the channel at an approximate slope of 2.6 percent. Materials with swave velocities greater than 1,300 feet per second ranged in depths of 75 to 110 feet in the MASW 1D profiles.

Seismic Line - East Sunny Point North

East Sunny Point North is on the Juneau side of the proposed crossing, oriented on a north-south axis and approximately perpendicular to Egan Drive. The SRT profile illustrates evidence of a potential fault within the first third of the profile. The edges of the SRT profile show artifacts of higher velocities that should be ignored during interpretation. However, the fault is not apparent in the 2D MASW profile. Seismic investigations typically have better resolution vertically than laterally, which may explain why the potential fault is not apparent within the MASW 2D profile. The depth to consolidated geomaterials ranges from 35 to 45 feet with an approximate slope of 1.9 percent dipping towards the channel. The MASW 1D indicates consolidated geomaterial at approximately 50 feet below the ground surface.

Seismic Line - Sunny Point South

Sunny Point South is on the Douglas side of the proposed crossing, oriented on a south-north axis and approximately perpendicular to North Douglas Highway. The SRT and the MASW 2D profiles agreed well. Consolidated geomaterials were observed at depths of 25 to 30 feet. Bedrock did outcrop at variable locations throughout the Douglas Island coastline. The edges of the SRT profile show artifacts of higher velocities that should be ignored during interpretation. The consolidated geomaterial slopes toward the channel at approximately 2.5 percent. The MASW 1D shows consolidated geomaterial at an approximate depth of 25 feet.

Seismic Line – Vanderbilt North

Vanderbilt North is on the Juneau side of the proposed crossing, oriented on a northeast-southwest axis and approximately perpendicular to Egan Drive. The SRT and the MASW 2D profiles do not agree well as the interpreted depths to consolidated geomaterials differ. For SRT, the interpreted depths to consolidated geomaterials range from 25 to 40 feet. For MASW 2D, the interpreted depths to consolidated geomaterials range from 35 to 40 feet. From the MASW 2D profile, the consolidated geomaterial slopes toward the channel at approximately 4.4 percent. The MASW 1D data shows consolidated geomaterial at depths ranging from 40 to 50 feet.

Seismic Line - Vanderbilt South

Vanderbilt South is on the Douglas side of the proposed crossing, oriented on a southwest-northeast axis and approximately perpendicular to North Douglas Highway. The SRT and the MASW 2D profiles agree well. The consolidated geomaterials were observed at depths of 15 to 35 feet. The edges of the SRT profile show artifacts of higher velocities that should be ignored during interpretation. The consolidated geomaterial slope towards the channel at an approximate slope of 6.2 percent. The MASW 1D indicates consolidated geomaterial at depths ranging from 25 to 40 feet.

Seismic Line – Twin Lakes North

Twin Lakes North is on the Juneau side of the proposed crossing, oriented on a northeast-southwest axis and approximately perpendicular to Egan Drive. The SRT and the MASW 2D profiles disagree. SRT indicates a depth to consolidated geomaterials at 70 to 75 feet. The MASW 2D suggests consolidated geomaterials at depths ranging from 75 to 85 feet. The consolidated geomaterial slopes toward the channel at approximately 2.5 percent within the SRT profile. The MASW 1D data shows consolidated geomaterial at depths ranging from 80 to 90 feet.

Seismic Line – Salmon Creek North

Salmon Creek North is on the Juneau side of the proposed crossing, oriented on a northeast-southwest axis and approximately perpendicular to Egan Drive. The SRT and the MASW 2D profiles agree well. Consolidated geomaterials were observed at depths of 55 to 65 feet. The consolidated geomaterials slope towards the channel at approximately 4.2 percent. The MASW 1D indicates consolidated geomaterial at depths of approximately 65 feet.

Seismic Line - Salmon Creek South

Salmon Creek South is on the Douglas side of the proposed crossing, oriented on a southwest-northeast axis and approximately perpendicular to North Douglas Highway. The SRT and the MASW 2D profiles agree well. Consolidated geomaterials were observed at depths of 35 to 55 feet. The consolidated geomaterials slope towards the channel at approximately 8.3 percent. The MASW 1D indicates consolidated geomaterial at depths of 35 to 45 feet.

Resistivity Analysis

The ERT method utilizes differences and contrasts in electrical resistivity to identify the subsurface materials, depth to water, and subsurface structures. This method measures the subsurface bulk (apparent) electrical resistivity providing information about changes in subsurface lithology and groundwater saturation. The measured apparent resistivity is a function of different parameters, such as porosity, groundwater salinity, clay content, water saturation, and how the subsurface conducts electricity.

Resistivity Line Summary

The following descriptions provide a summary of each electrical resistivity line and an interpretation of the estimated depth to bedrock or consolidated geomaterial:

Table 7: Resistivity Line Summary

Seismic Transect	Depth to Interpreted Consolidated geomaterial - ERT (feet below ground surface)	
West Sunny Point North	75 - 90	
East Sunny Point North	40 - 50	

Resistivity Line - West Sunny Point North

West Sunny Point North is on the Juneau side of the proposed crossing, oriented on a north-south axis and approximately perpendicular to Egan Drive. The ERT profile illustrates consolidated geomaterials observed at depths of 75 to 90 feet. The consolidated geomaterial slope towards the channel at an approximate slope of 2.6 percent. The ERT data agrees well with the seismic data at this location.

Resistivity Line – East Sunny Point North

East Sunny Point North is on the Juneau side of the proposed crossing, oriented on a north-south axis and approximately perpendicular to Egan Drive. The ERT profile illustrates evidence of a potential fault within the first third of the profile; this feature was also observed within the seismic data. The ERT profile suggests consolidated geomaterials at depths of 45 to 55 feet. The ERT profile at this location doesn't indicate the layering observed at West Sunny Point North. The consolidated geomaterials slope towards the channel at an approximate slope of 2.1 percent.

Limitations

DOWL prepared this memo for the DOT&PF and their Consultants' use on this project. DOWL prepared this memo, including figures specifically for the above-referenced sites. The data does not apply to other sites. Do not separate the figures from the text or appendices for independent use.

DOWL performed these services consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in this area under similar time and budgetary constraints. No warranty is made or implied.

Any conclusions made by a construction contractor or bidder relating to construction means, methods, techniques, sequences, or costs based upon the information provided in this memo are not the responsibility of DOT&PF or DOWL.

Attachments:

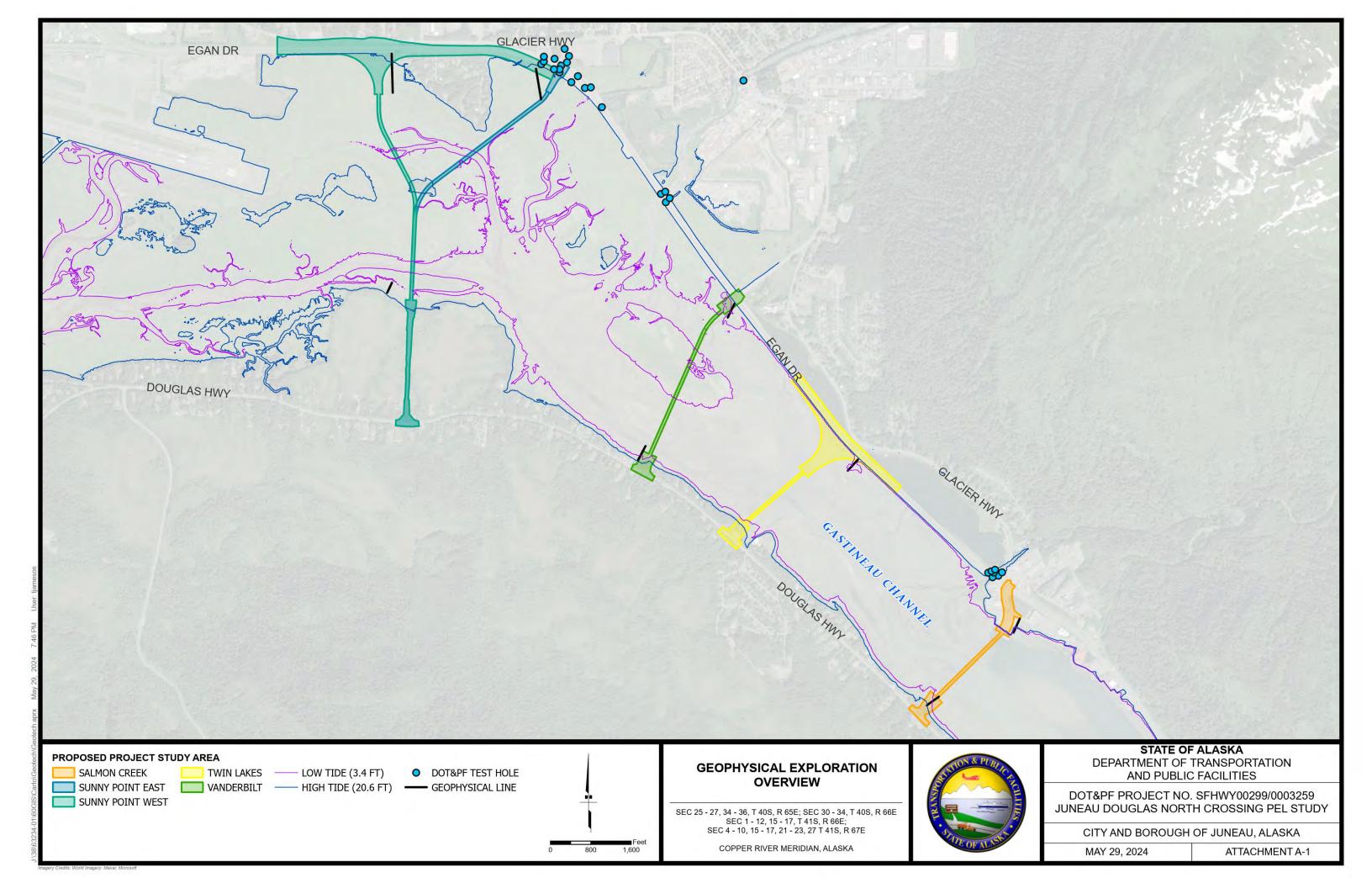
Appendix A: Geophysical Data Collection Maps

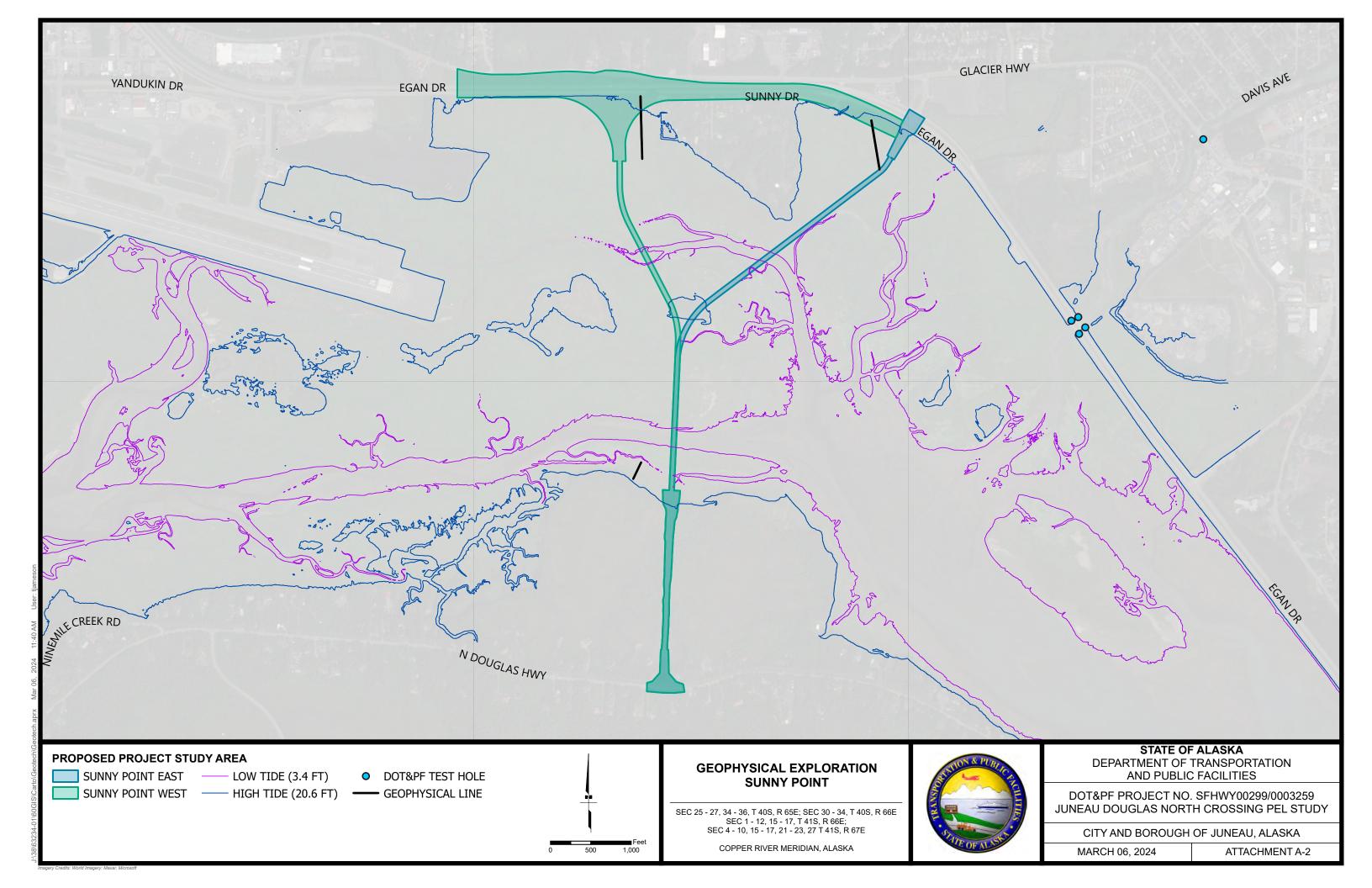
Appendix B: Seismic 2D Tomograms and Resistivity Profiles

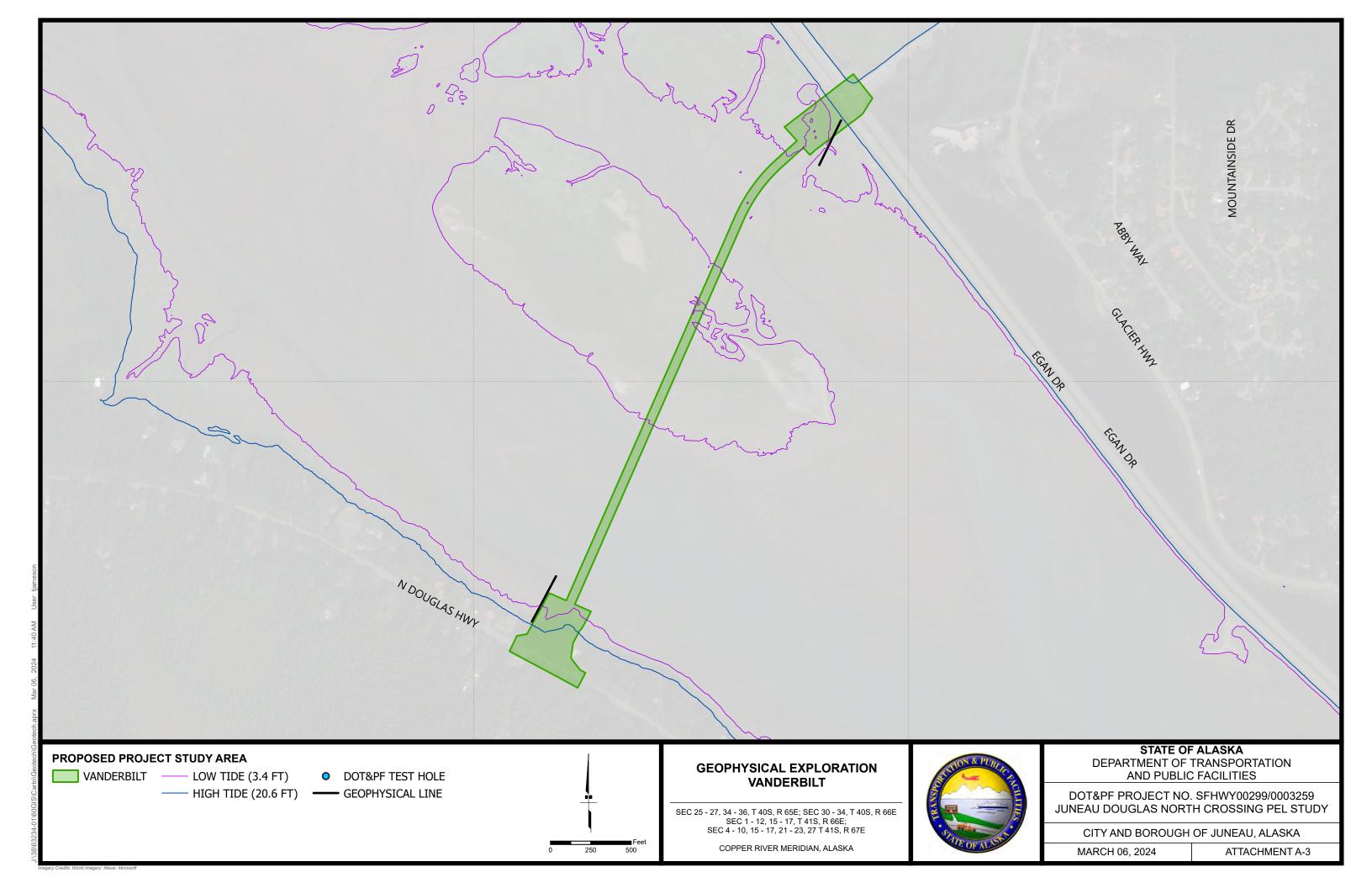
References

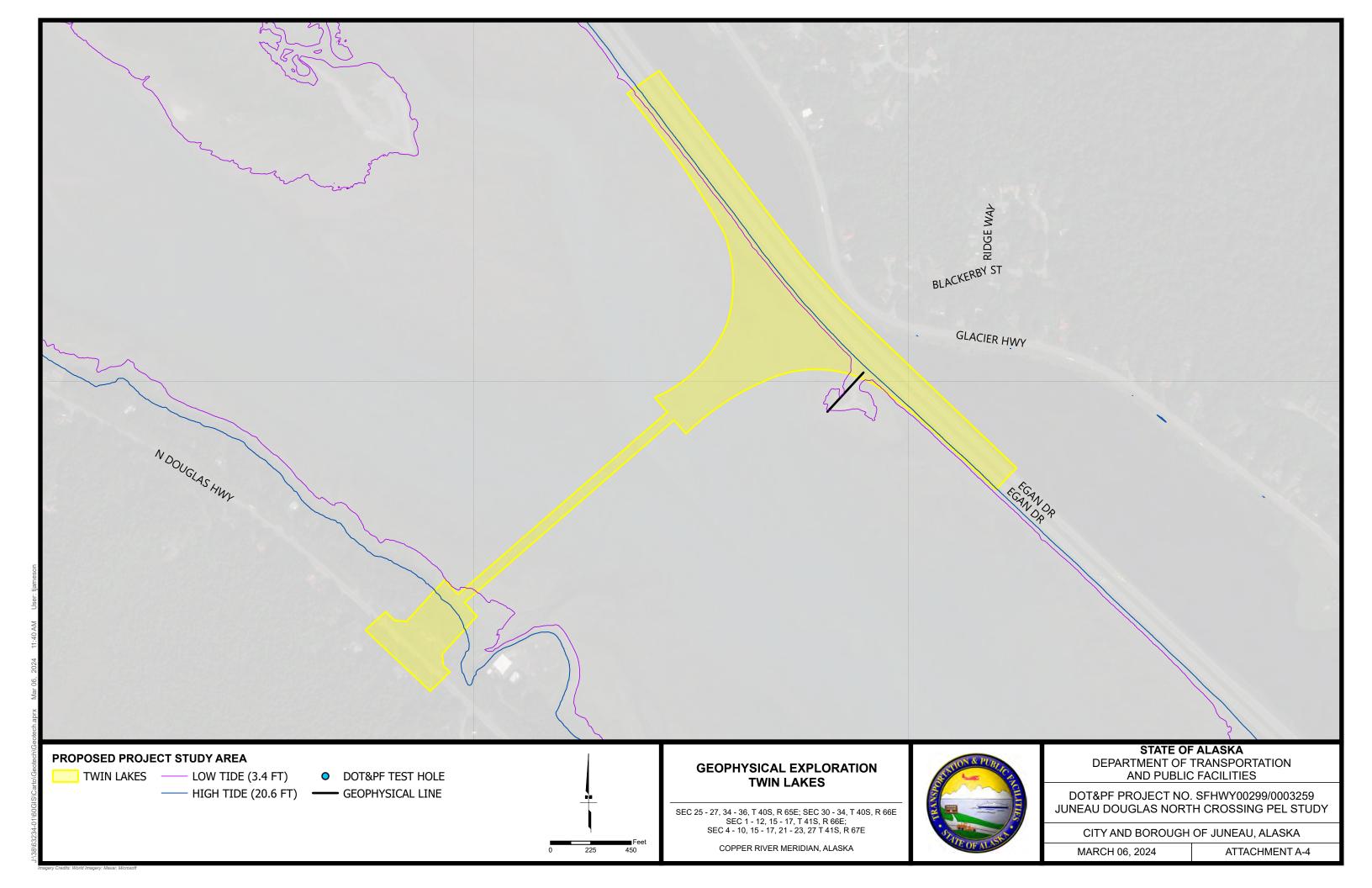
Burger, H.R., Sheehan, A.F., and Jones, C.H. 2006 Introduction to Applied Geophysics, page 20. W.W. Norton & Company, Inc.

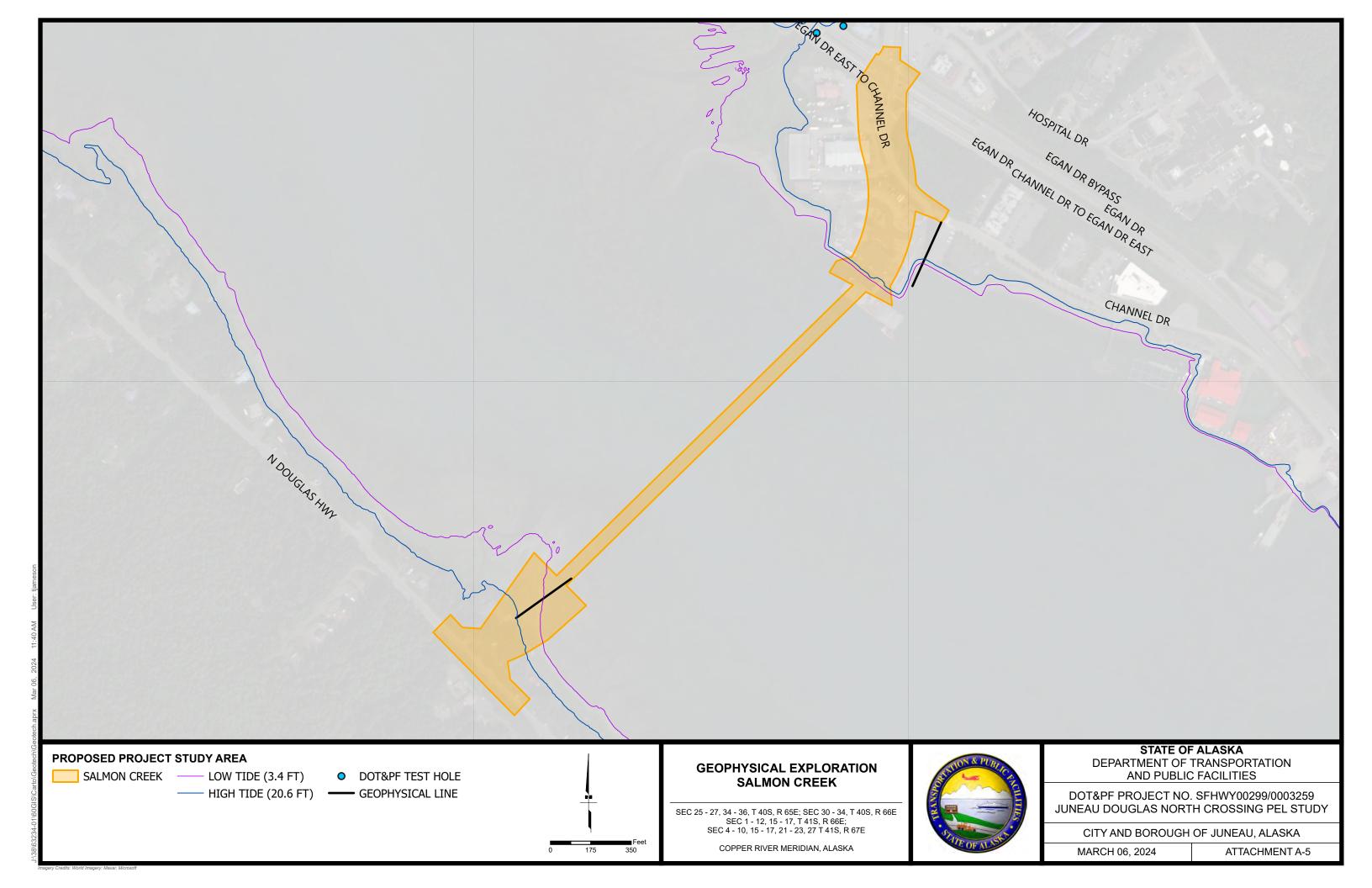
DOT&PF. 1970. Lemon Creek Bridge. Project No.: F-095-8.

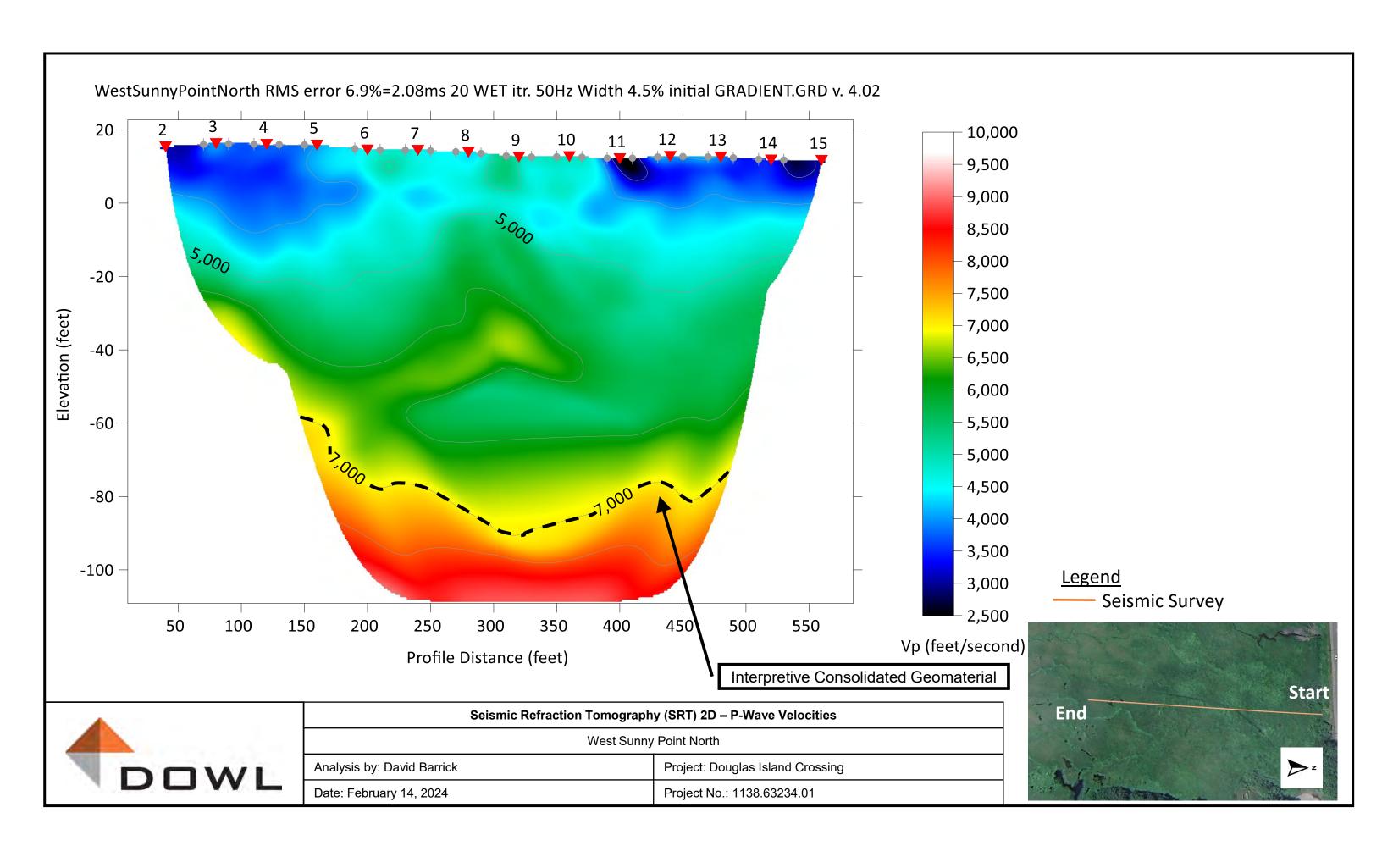

DOT&PF. 1970. Salmon Creek Bridge. Project No.: F-095-8(3).

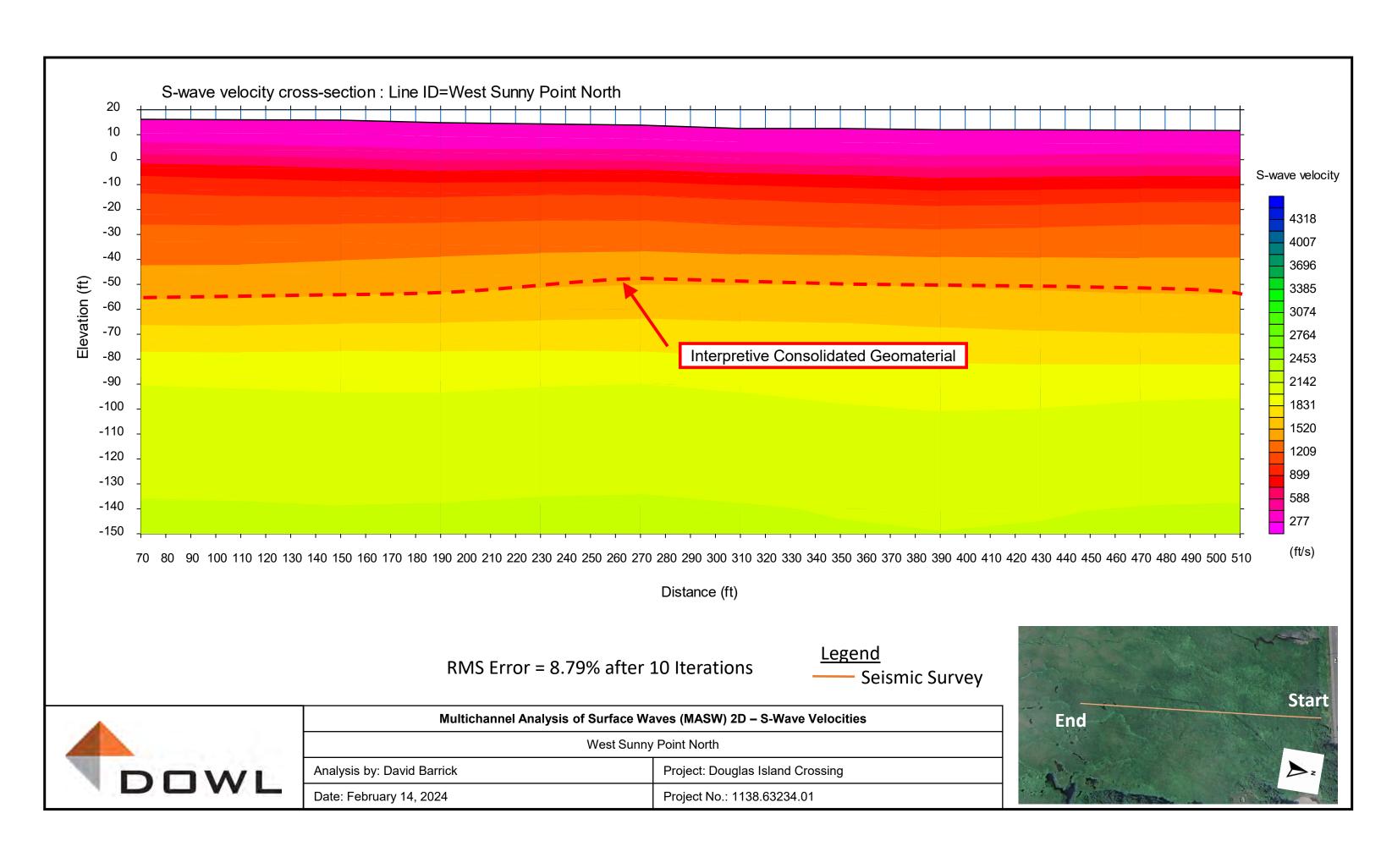

DOT&PF. 1979. Kowee Creek Bridge. Project No.: S-0959(10).

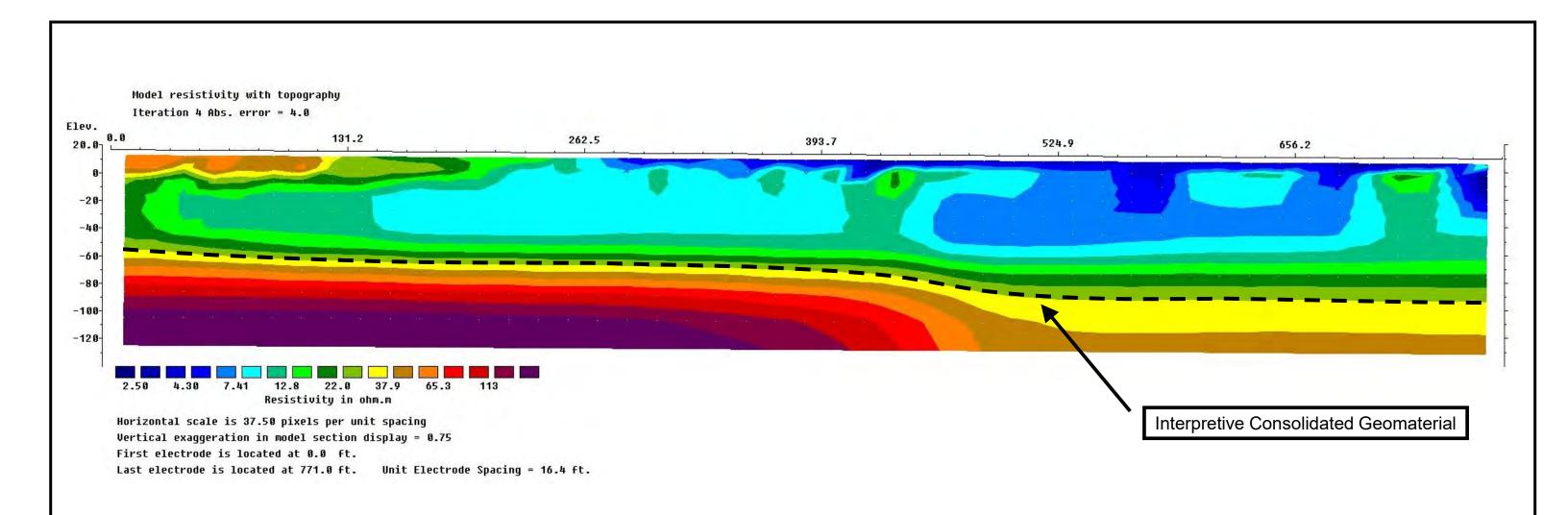

Miller, R.D. 1975. Surface Geologic Map of the Juneau Urban Area and Vicinity, Alaska, Department of Interior Geological Survey, Reston, Va.

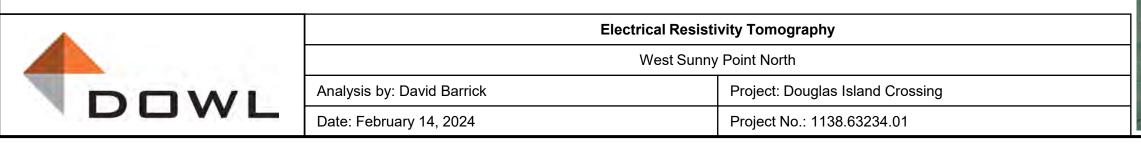

Press, F. 1966. *Seismic velocities*. In Handbook of Physical Constants, rev. ed., ed S.P. Clark Jr., pages 195-218. Geological Society of America Memoir 97.

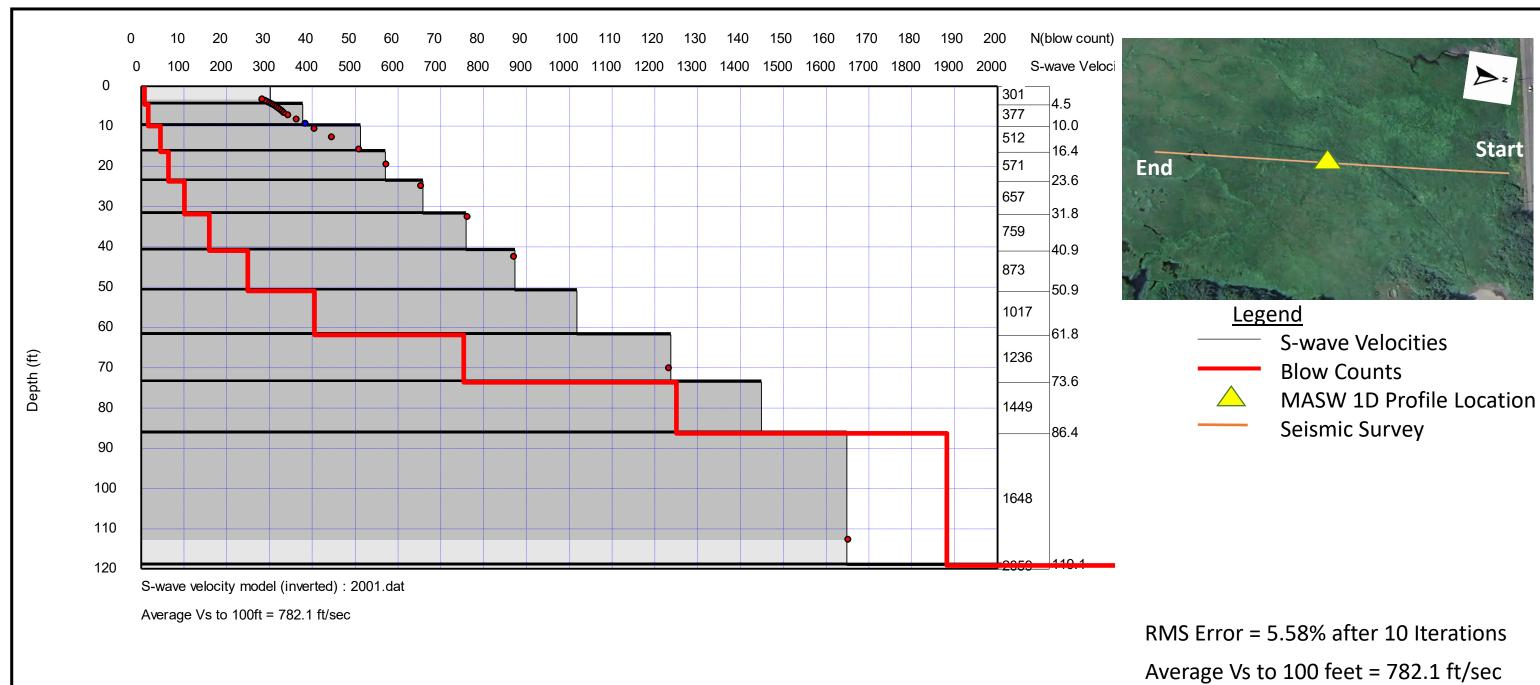

APPENDIX A GEOPHYSICAL DATA COLLECTION MAPS



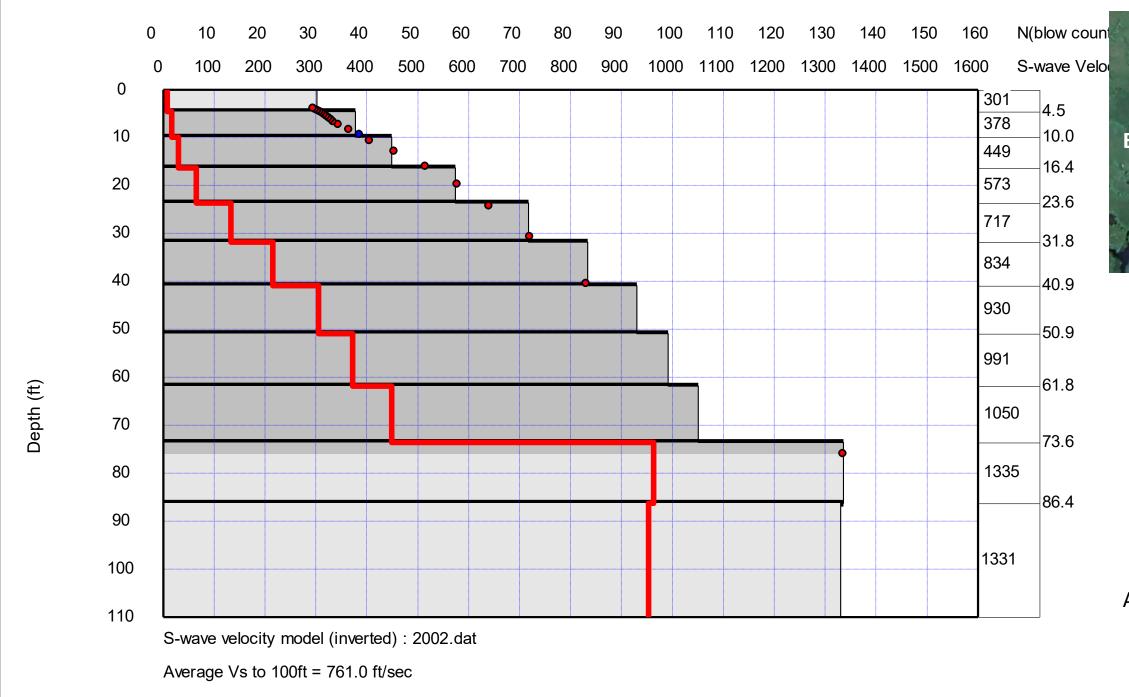





APPENDIX B SEISMIC 2D TOMOGRAMS AND RESISTIVITY PROFILES



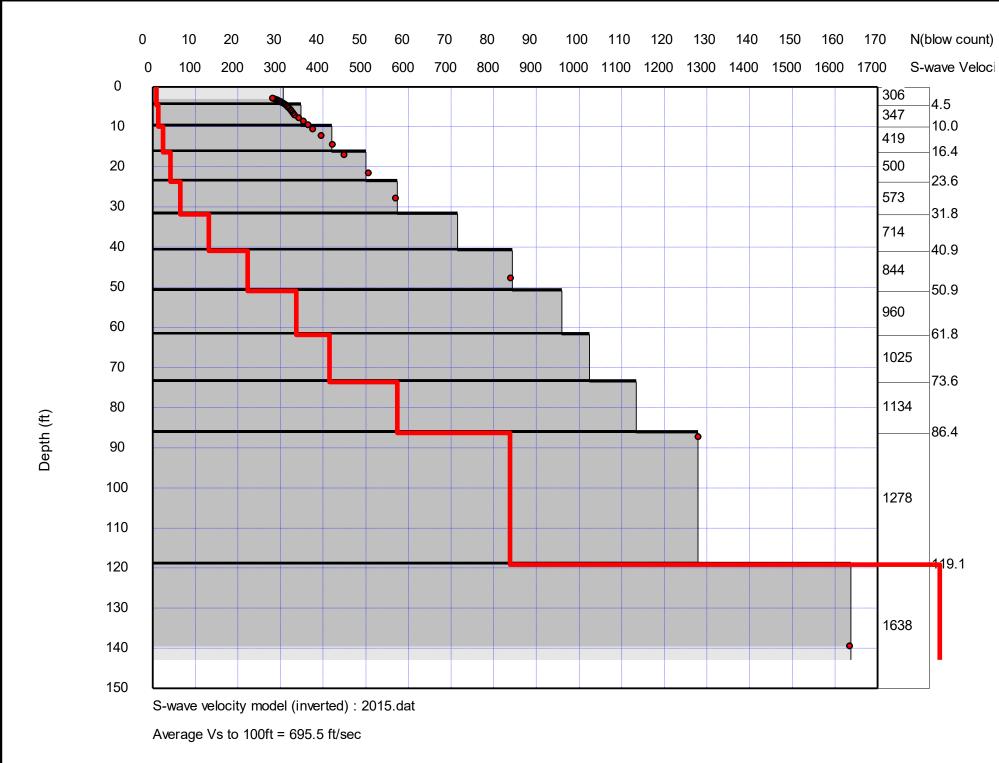
<u>Legend</u> Resistivity Survey



RMS Error = 5.58% after 10 Iterations Average Vs to 100 feet = 782.1 ft/sec

Start

Multichannel Analysis of Surface Waves (MASW) 1D – West Sunny Point North – Shot 2001		SW) 1D – West Sunny Point North – Shot 2001
	West Sunny Point North	
Analysis by: David Barrick Project: Douglas Island Crossing		Project: Douglas Island Crossing
ĺ	Date: February 14, 2024	Project No.: 1138.63234.01


Start End Start

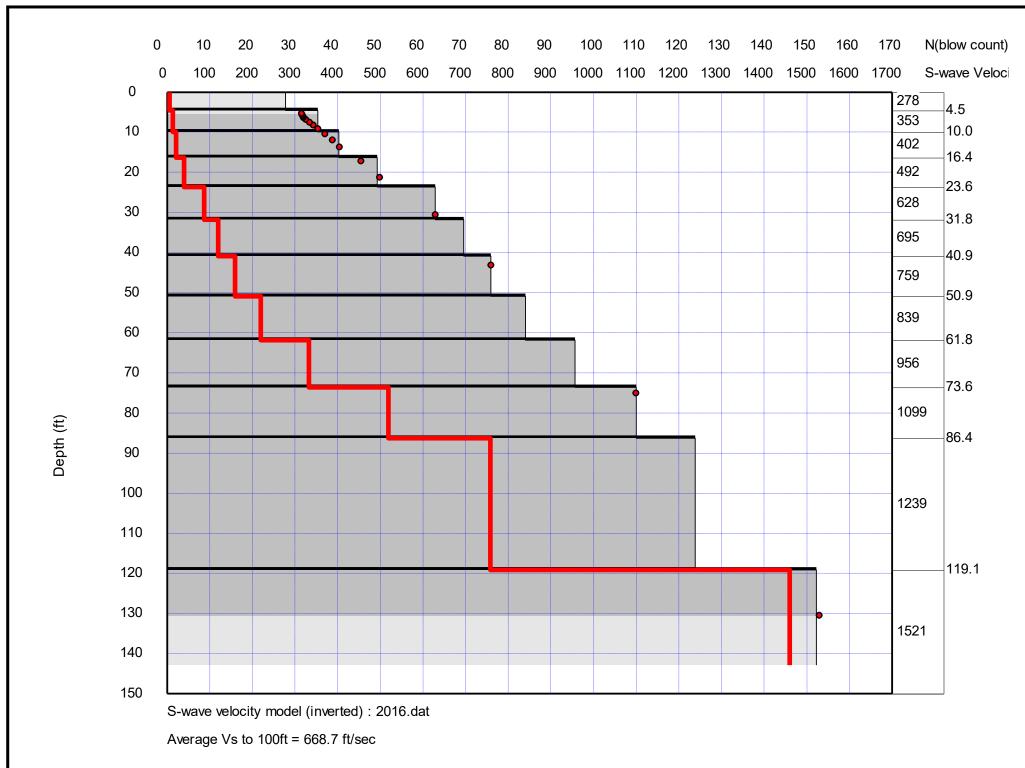
Legend
S-wave Velocities
Blow Counts
MASW 1D Profile Location
Seismic Survey

RMS Error = 6.45% after 10 Iterations
Average Vs to 100 feet = 761.0 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D – West Sunny Point North – Shot 2002	
West Sunny Point North	
Analysis by: David Barrick Project: Douglas Island Crossing	
Date: February 14, 2024	Project No.: 1138.63234.01

<u>Legend</u>

S-wave Velocities
Blow Counts


MASW 1D Profile Location Seismic Survey


RMS Error = 6.77% after 10 Iterations

Average Vs to 100 feet = 695.5 ft/sec

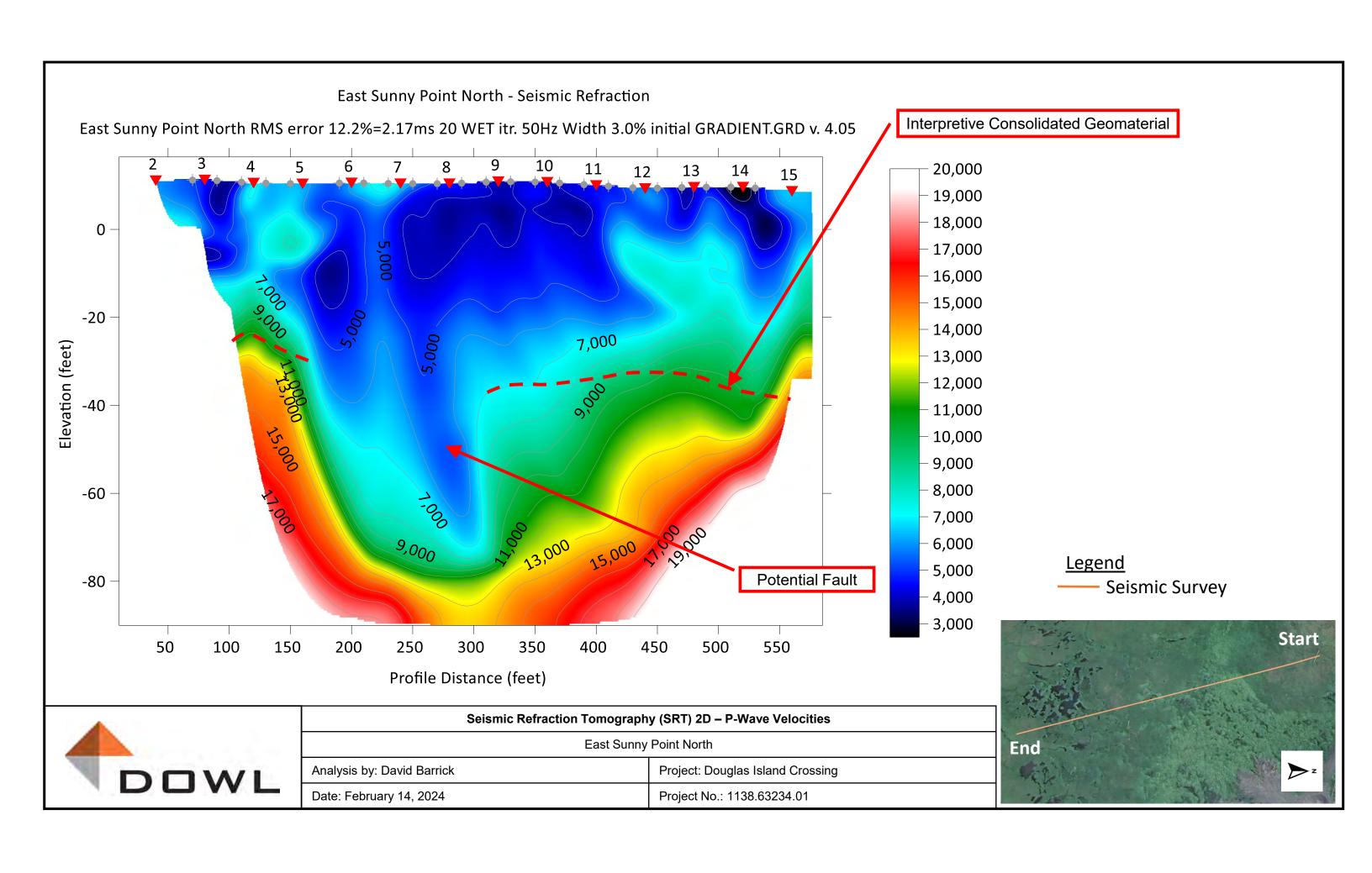
	Multichannel Analysis of Surface Waves (MASW) 1D – West Sunny Point North – Shot 2003	
West Sunny Point North		Point North
	Analysis by: David Barrick	Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01

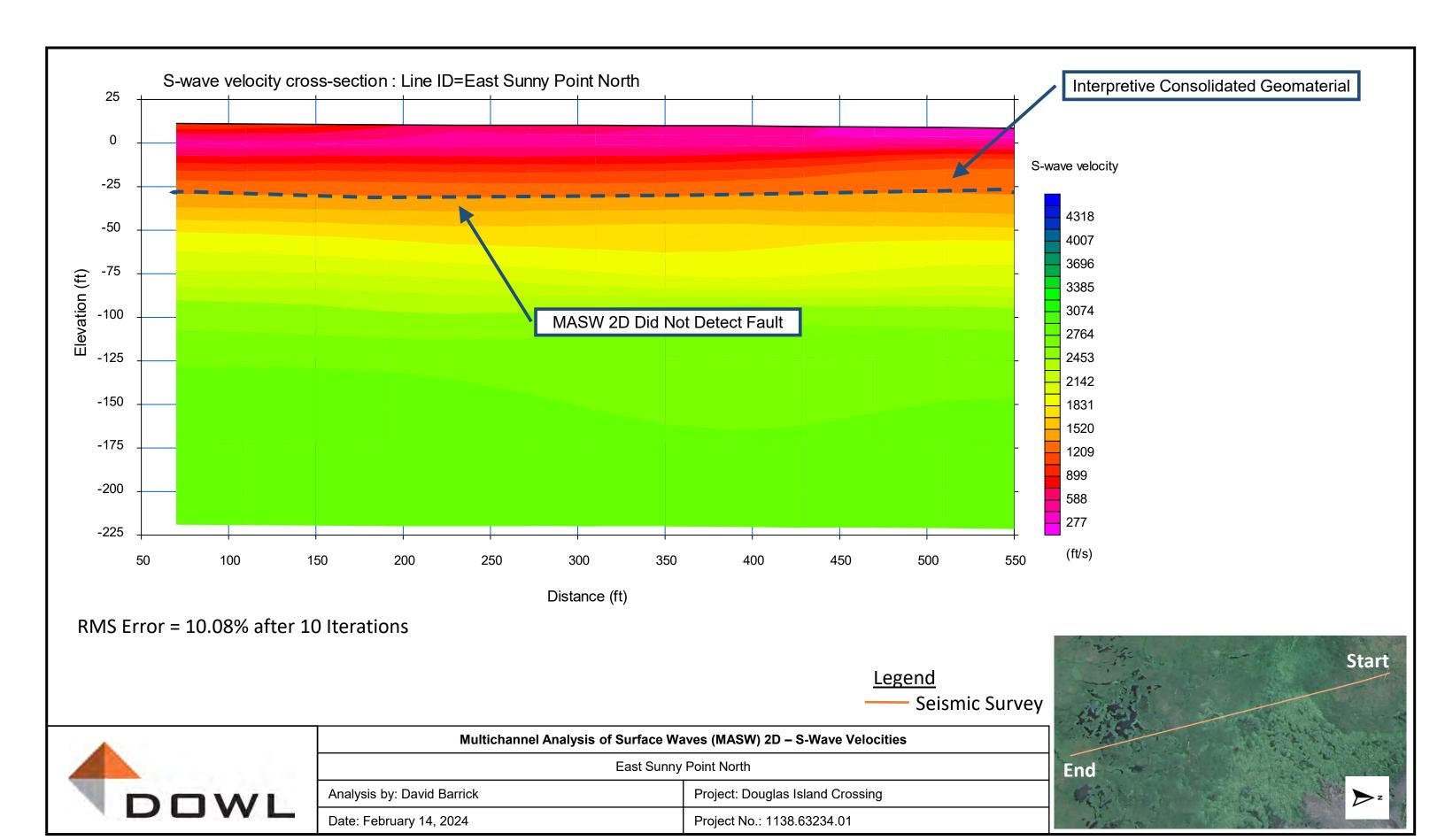
<u>Legend</u>

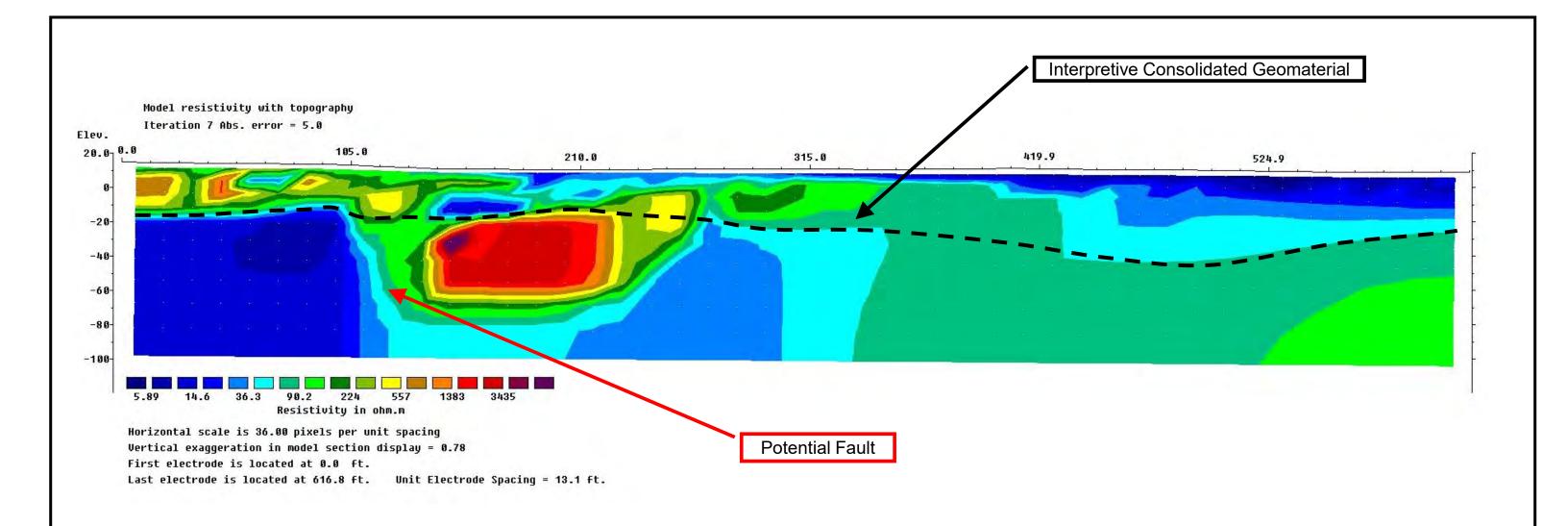
S-wave Velocities
Blow Counts

MASW 1D Profile Location Seismic Survey

RMS Error = 7.37% after 10 Iterations
Average Vs to 100 feet = 668.7 ft/sec


	Multichannel Analysis of Surface Waves (MASW) 1D – West Sunny Point North – Shot 2004	
West Sunny Point North		Point North
	Analysis by: David Barrick	Project: Douglas Island Crossing
Ī	Date: February 14, 2024	Project No.: 1138.63234.01


West Sunny Point North – MASW 1D Results		
Geophysical Investigation		
Shot File Number	Vs100 (feet/second)	Site Class
2001	782.1	D
2002	761.0	D
2015	695.5	D
2016	668.7	D


AASHTO LRFD TABLE 3.10.3.1-1 – Site Classification		
Site Class	Rock/Soil Type	Sum of Vs Calculated Using 1D Shear Wave Velocities (feet per second)
А	Hard Rock	>5,000
В	Rock	2,500 to 5,000
С	Very Dense Soil and Soil Rock	1,200 to 2,500
D	Stiff Soil	600 to 1,200
E	More Than 10 Feet of Soft Clay	<600
F	Soils Requiring Site Specific Evaluations	See LRFD Table 3.10.3.1-1

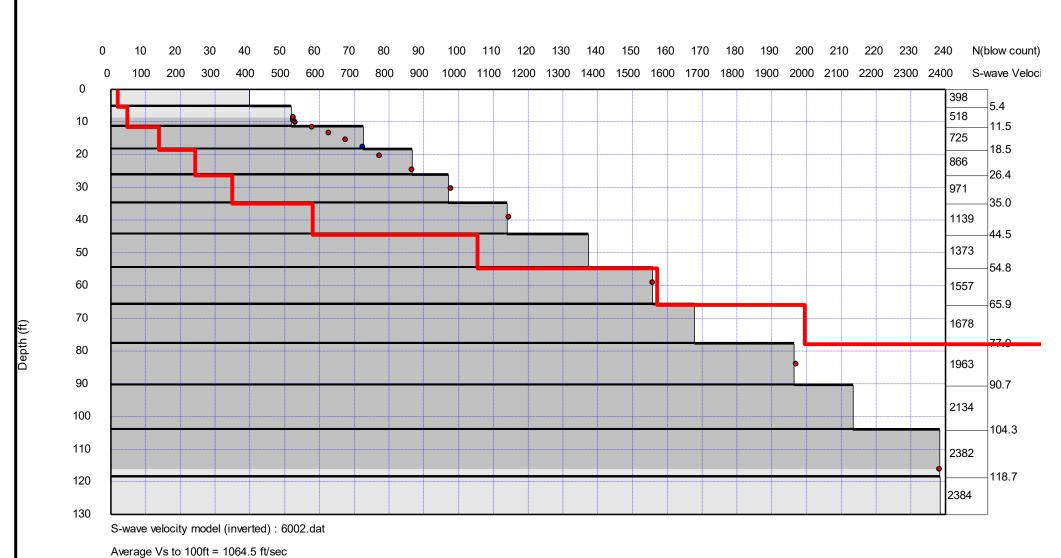
Multichannel Analysis of Surface Waves (MASW) 1D – Summary of Results	
West Sunny Point North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: June 3, 2024	Project No.: 1138.63234.01

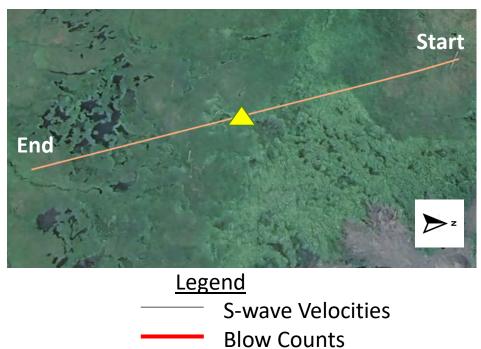

RMS Error = 5.0% after 7 Iterations

Legend Seismic Survey

Electrical Resistivity Tomography 2D	
East Sunny Point North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

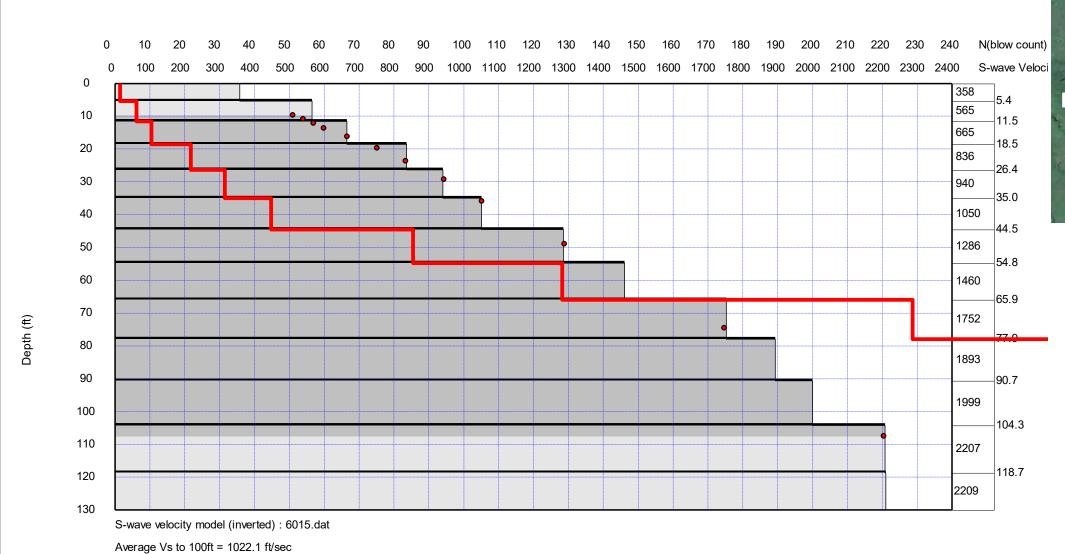
S-wave Velocities
Blow Counts


MASW 1D Profile Location Seismic Survey


RMS Error = 4.71% after 10 Iterations

Average Vs to 100 feet = 1,057.4 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek North – Shot 6001	
East Sunny Point North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

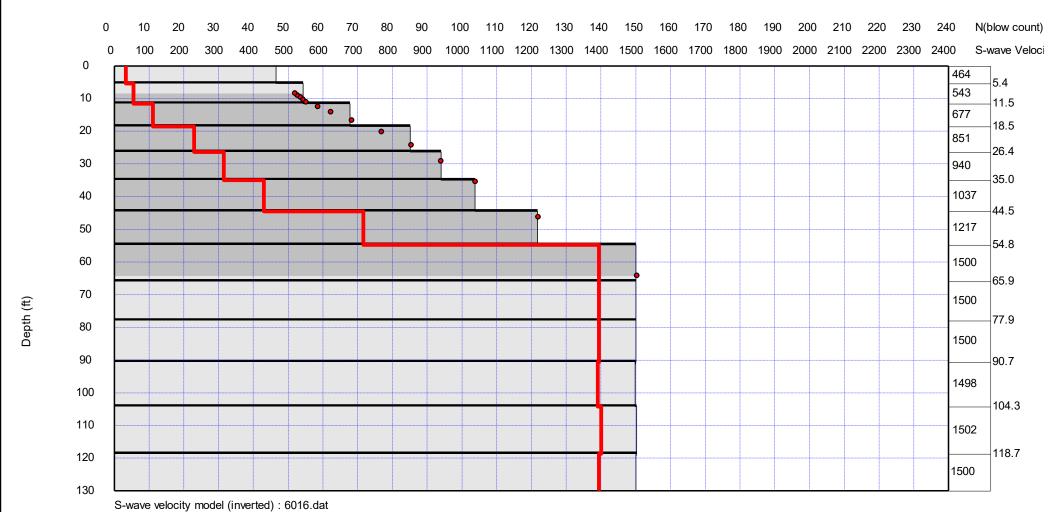

MASW 1D Profile Location

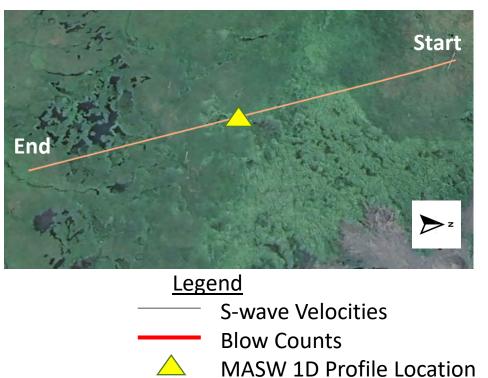
Seismic Survey

RMS Error = 10.48% after 10 Iterations Average Vs to 100 feet = 1,064.5 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek North – Shot 6002	
East Sunny Point North	
Analysis by: David Barrick Project: Douglas Island Crossing	
Date: February 14, 2024	Project No.: 1138.63234.01

End Legend


S-wave Velocities
Blow Counts


MASW 1D Profile Location Seismic Survey

RMS Error = 10.23% after 10 Iterations
Average Vs to 100 feet = 1,022.1 ft/sec

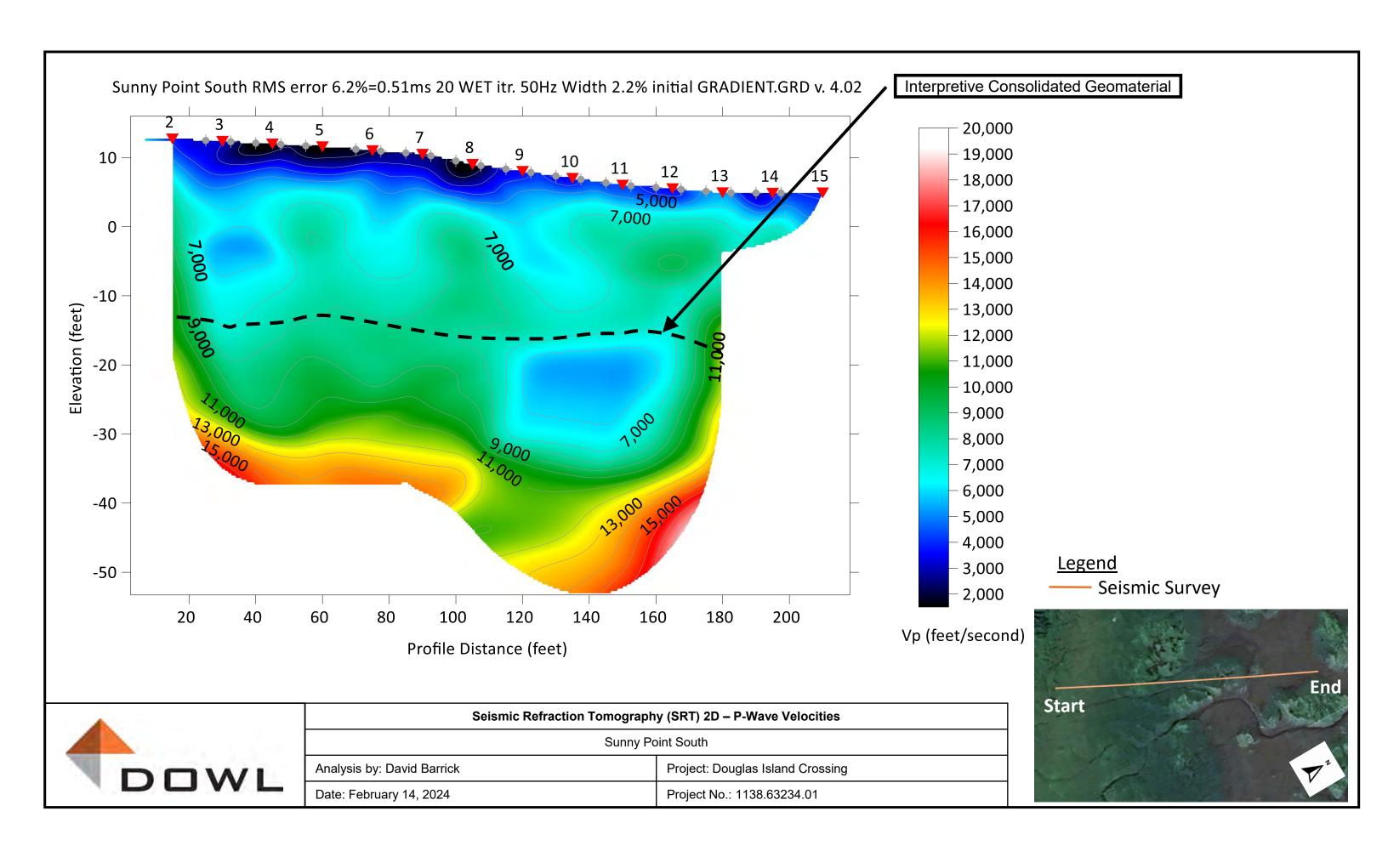
Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek North – Shot 6015	
East Sunny Point North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

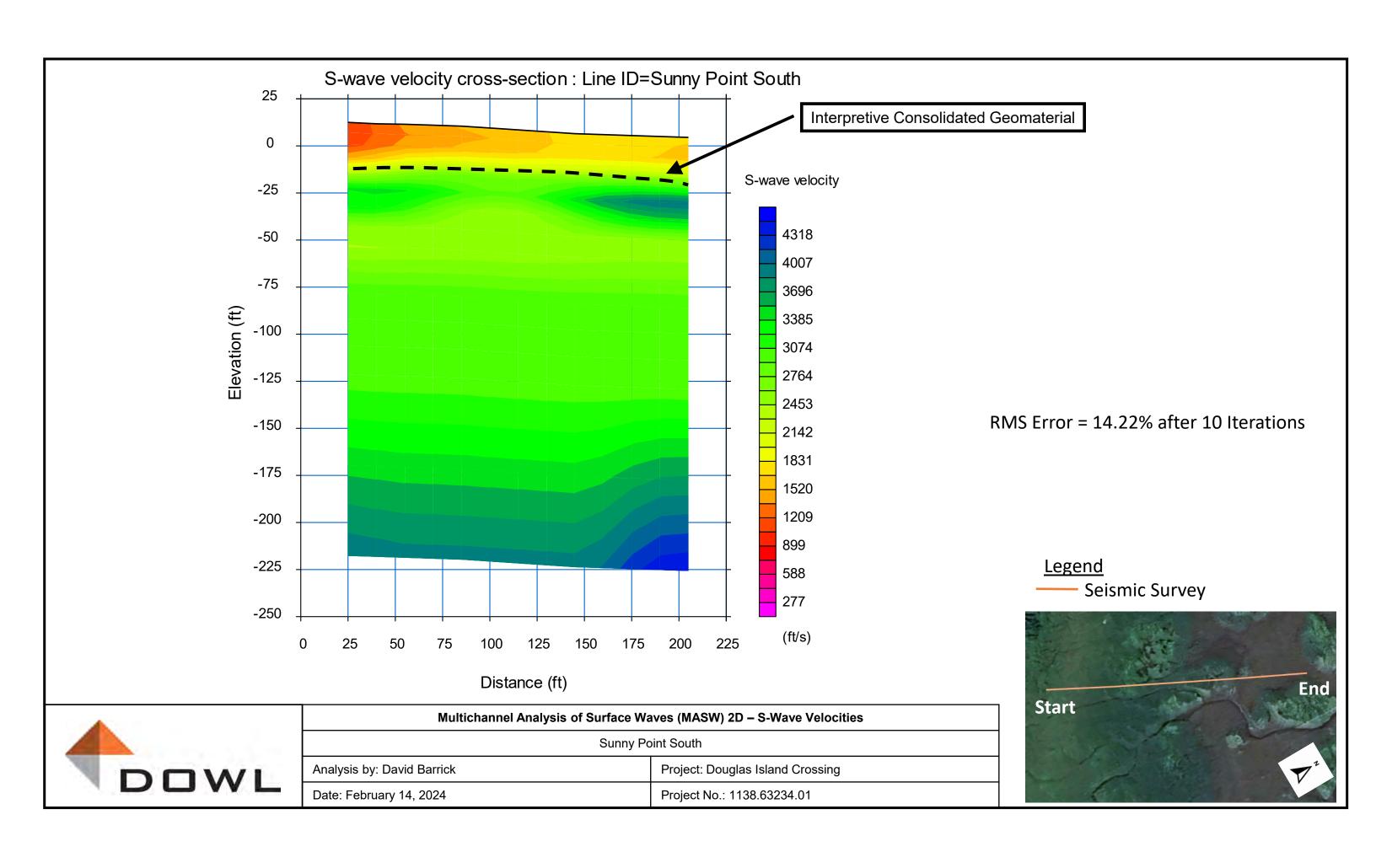
Seismic Survey

RMS Error = 4.01% after 10 Iterations

Average Vs to 100 feet = 1,006.5 ft/sec

Average Vs to 100ft = 1006.5 ft/sec


Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek North – Shot 1016	
East Sunny Point North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01


East Sunny Point North – MASW 1D Results			
Ge	Geophysical Investigation		
Shot File Number	Vs100 (feet/second)	Site Class	
6,001	1,057.4	С	
6,002	1,064.5	С	
6,015	1,022.1	С	
6,016	1,006.5	С	

AASHTO LRFD TABLE 3.10.3.1-1 – Site Classification		
Site Class	Rock/Soil Type	Sum of Vs Calculated Using 1D Shear Wave Velocities (feet per second)
А	Hard Rock	>5,000
В	Rock	2,500 to 5,000
С	Very Dense Soil and Soil Rock	1,200 to 2,500
D	Stiff Soil	600 to 1,200
Е	More Than 10 Feet of Soft Clay	<600
F	Soils Requiring Site Specific Evaluations	See LRFD Table 3.10.3.1-1

Multichannel Analysis of Surface Waves (MASW) 1D – Summary of Results	
East Sunny Point North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: June 3, 2024	Project No.: 1138.63234.01

<u>Legend</u>

S-wave Velocities

Blow Counts
MASW 1D Profile Location

Seismic Survey


S-wave velocity model (inverted) : 7001.dat

Average Vs to 100ft = 2160.7 ft/sec

RMS Error = 6.40% after 10 Iterations
Average Vs to 100 feet = 2,160.7 ft/sec

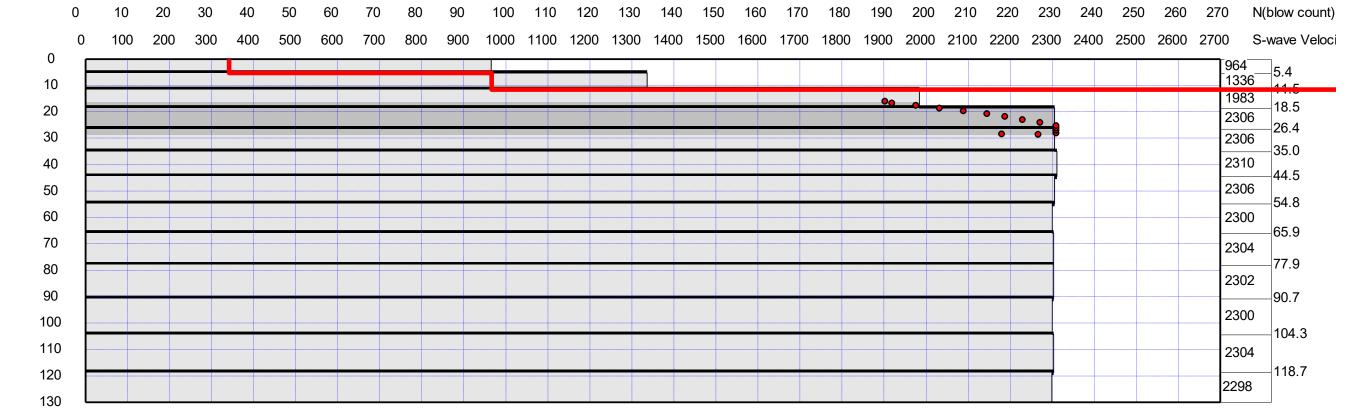
Multichannel Analysis of Surface Waves (MASW) 1D – Sunny Point South – Shot 7001	
Sunny Point South	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities
Blow Counts
MASW 1D Profile Location
Seismic Survey

RMS Error = 4.38% after 10 Iterations
Average Vs to 100 feet = 2,411.5 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D – Sunny Point South – Shot 7002
Sunny Point South	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

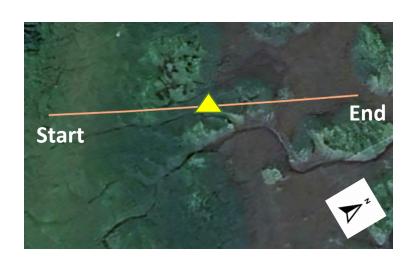
RMS Error = 3.48% after 10 Iterations

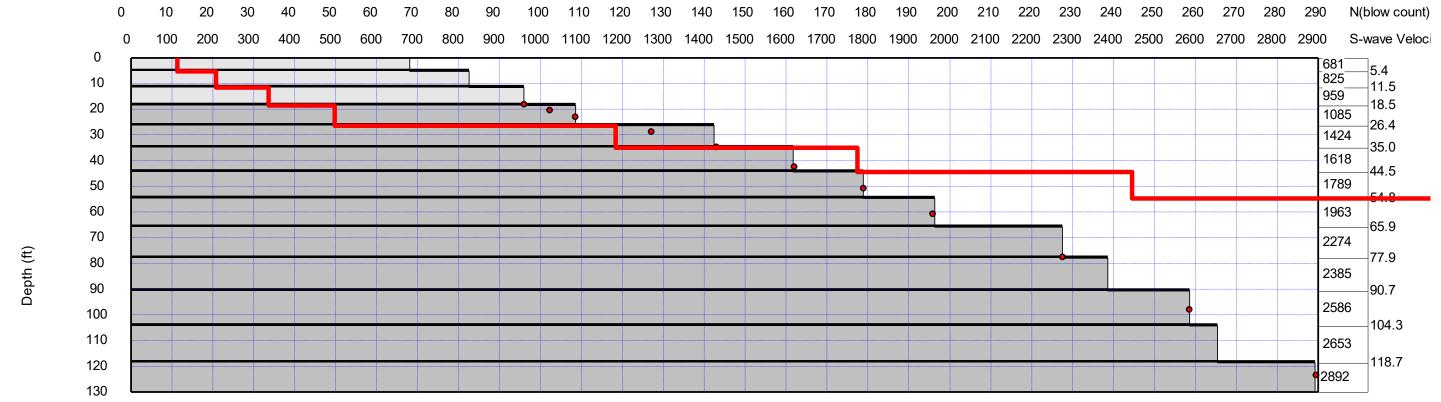

Average Vs to 100 feet = 2,038.6 ft/sec

MASW 1D Profile Location Seismic Survey

S-wave velocity model (inverted): 7015.dat

Average Vs to 100ft = 2038.6 ft/sec


Multichannel Analysis of Surface Waves (MASW) 1D – Sunny Point South – Shot 7015	
Sunny Point South	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01


RMS Error = 4.80% after 10 Iterations

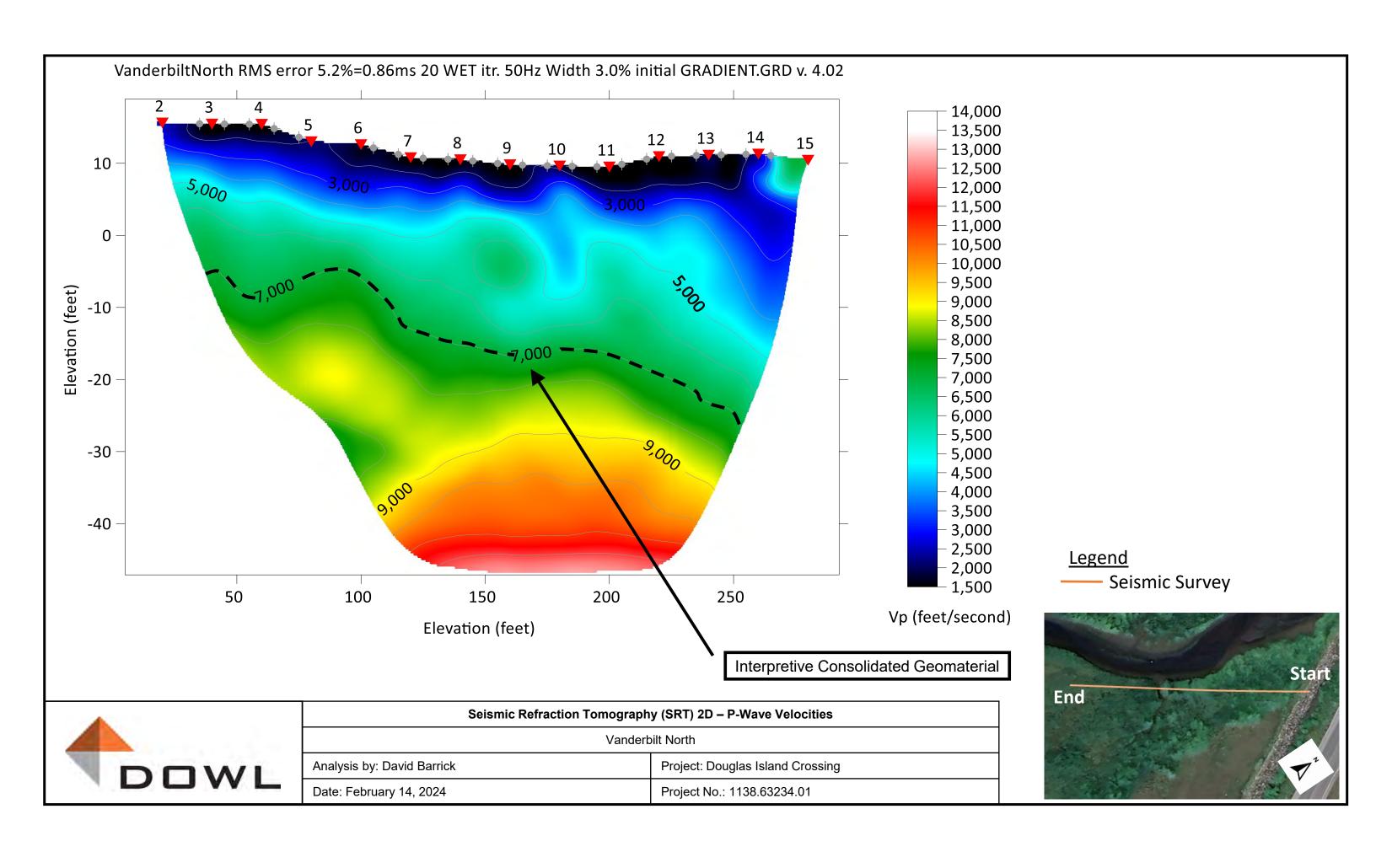
Average Vs to 100 feet = 1,482.8 ft/sec

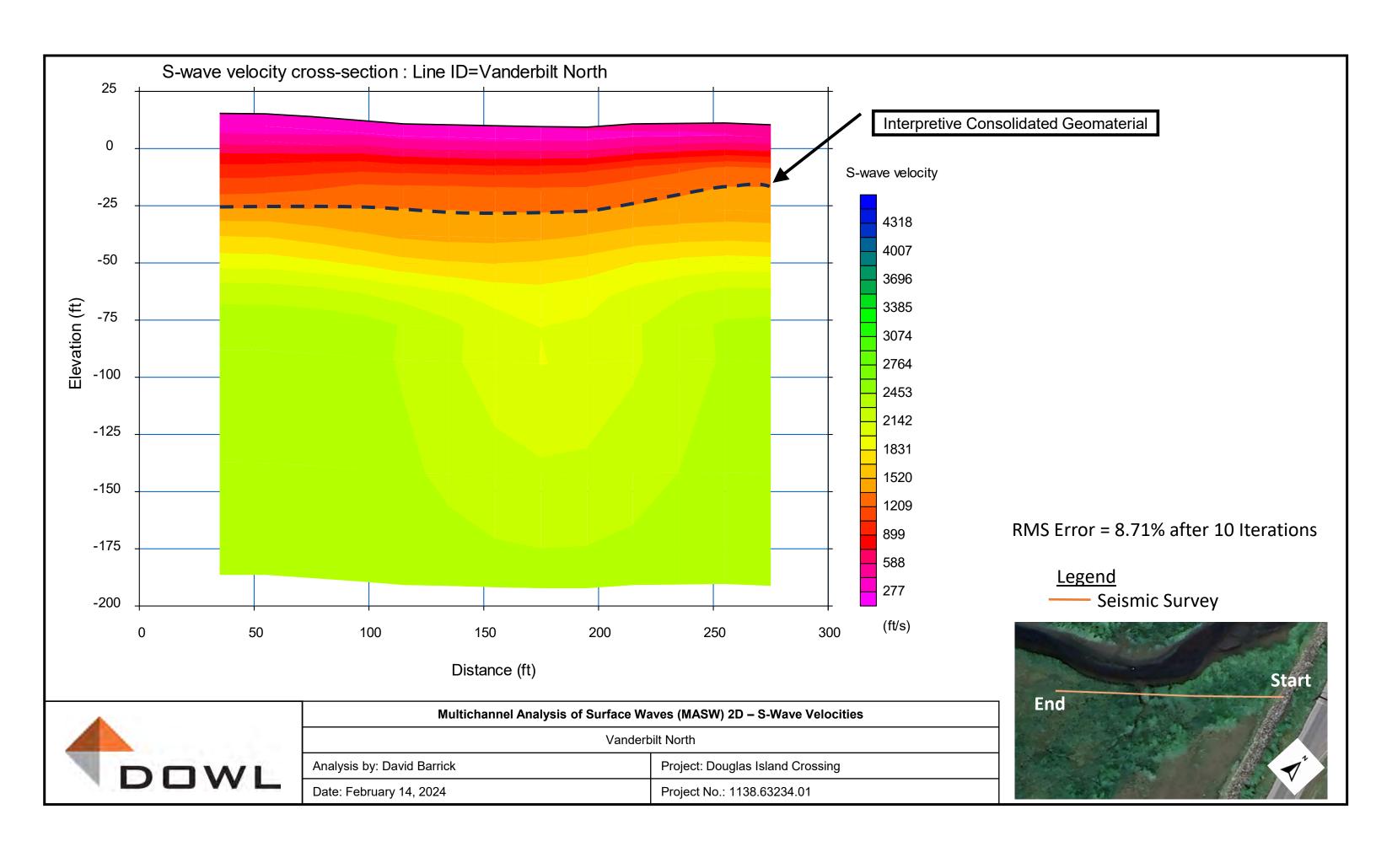
<u>Legend</u>

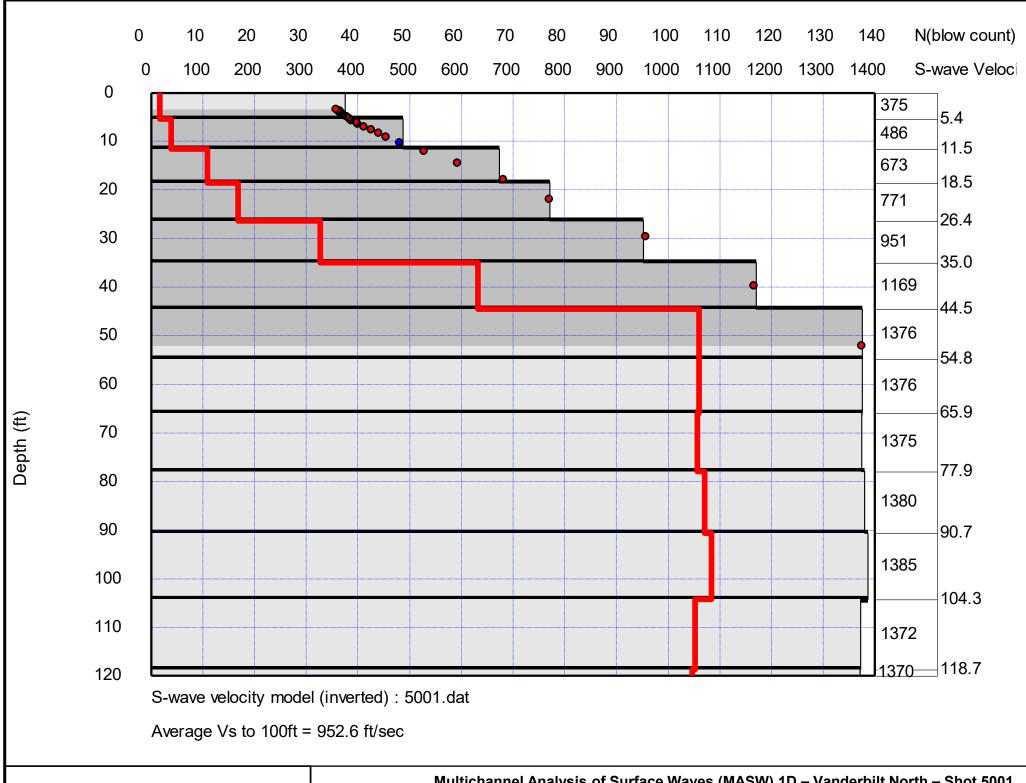
S-wave Velocities
Blow Counts
MASW 1D Profile Location
Seismic Survey

S-wave velocity model (inverted) : 7016.dat

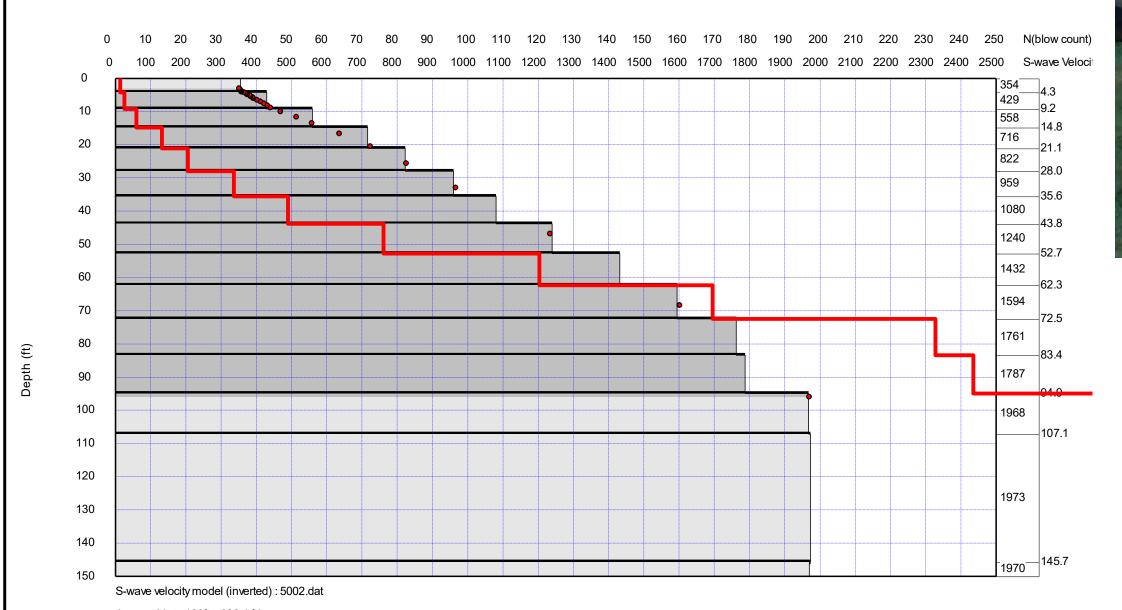
Average Vs to 100ft = 1482.8 ft/sec


Multichannel Analysis of Surface Waves (MASW) 1D – Sunny Point South – Shot 7016	
Sunny Point South	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01


Sunny Point South – MASW 1D Results		
Geophysical Investigation		
Shot File Number	Vs100 (feet/second)	Site Class
7,001	2,160.7	С
7,002	2,411.5	С
7,015	2,038.6	С
7,016	1,482.8	С


AASHTO LRFD TABLE 3.10.3.1-1 – Site Classification		
Site Class	Rock/Soil Type	Sum of Vs Calculated Using 1D Shear Wave Velocities (feet per second)
А	Hard Rock	>5,000
В	Rock	2,500 to 5,000
С	Very Dense Soil and Soil Rock	1,200 to 2,500
D	Stiff Soil	600 to 1,200
E	More Than 10 Feet of Soft Clay	<600
F	Soils Requiring Site Specific Evaluations	See LRFD Table 3.10.3.1-1

Multichannel Analysis of Surface Waves (MASW) 1D – Summary of Results	
Sunny Point South	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: June 3, 2024	Project No.: 1138.63234.01

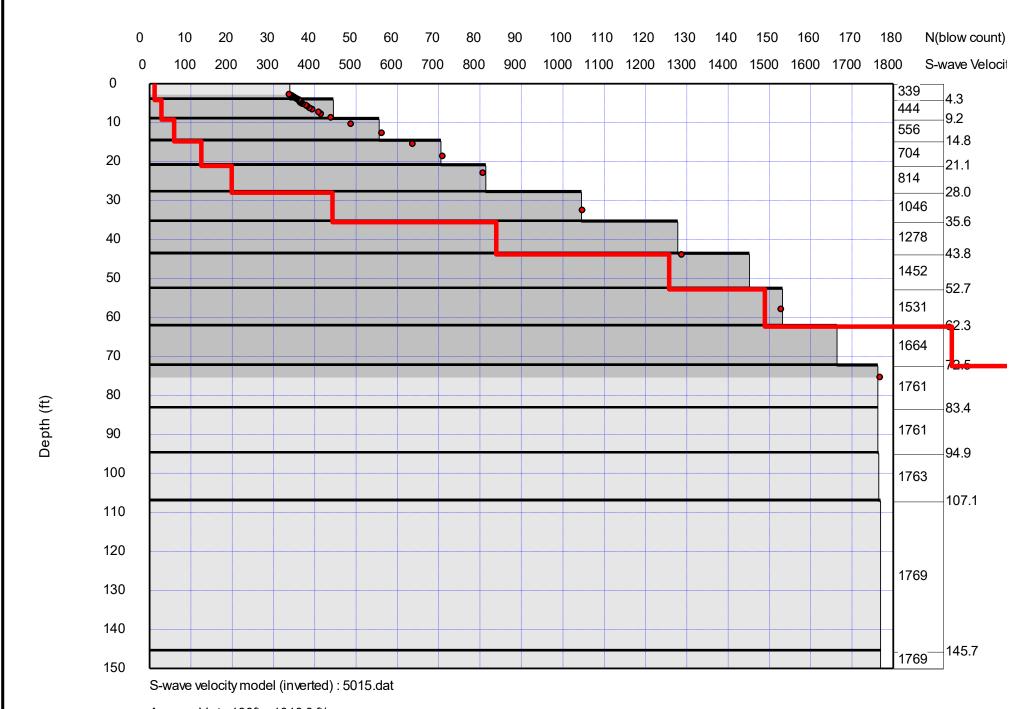

Legend
S-wave Velocities
Blow Counts

MASW 1D Profile Location
Seismic Survey

RMS Error = 7.62% after 10 Iterations
Average Vs to 100 feet = 952.6 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D – Vanderbilt North – Shot		MASW) 1D – Vanderbilt North – Shot 5001
Vanderbilt North		
	Analysis by: David Barrick	Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities
Blow Counts


MASW 1D Profile Location Seismic Survey

RMS Error = 6.34% after 10 Iterations Average Vs to 100 feet = 982.4 ft/sec

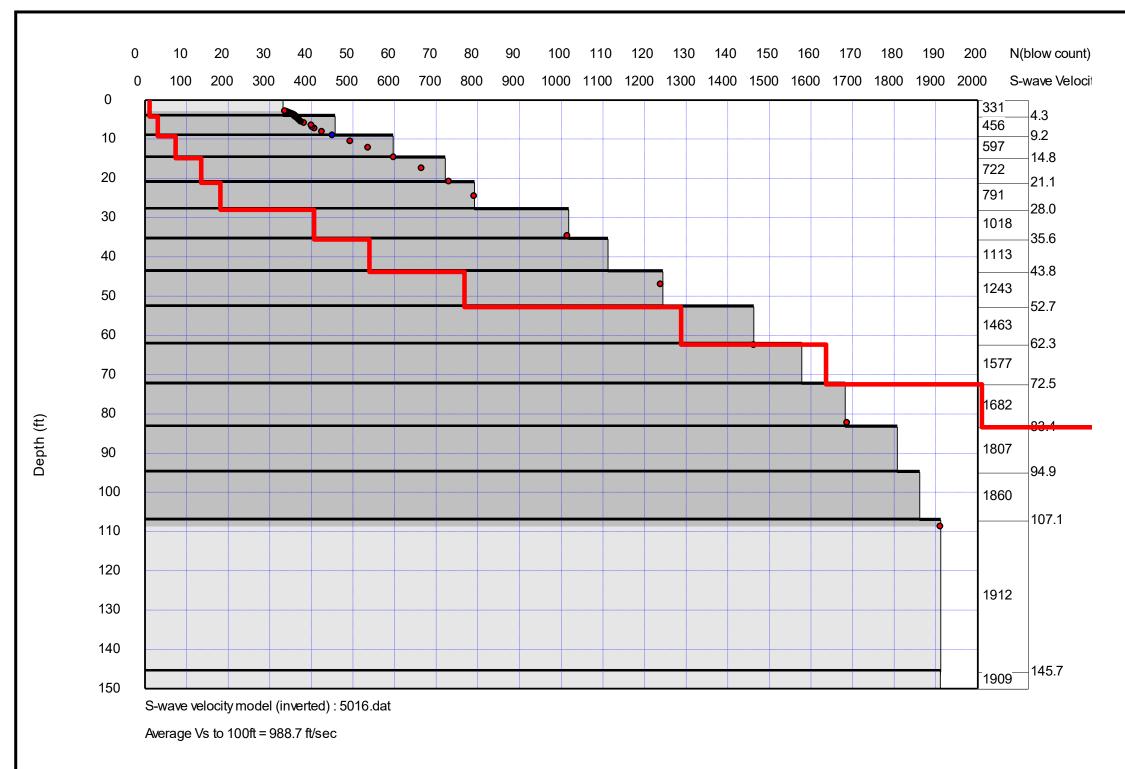
Average Vs to 100ft = 982.4 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D – Vanderbilt North – Shot 5002	
Vanderbilt North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities

Blow Counts

MASW 1D Profile Location Seismic Survey


RMS Error = 8.86% after 10 Iterations

Average Vs to 100 feet = 1,010.0 ft/sec

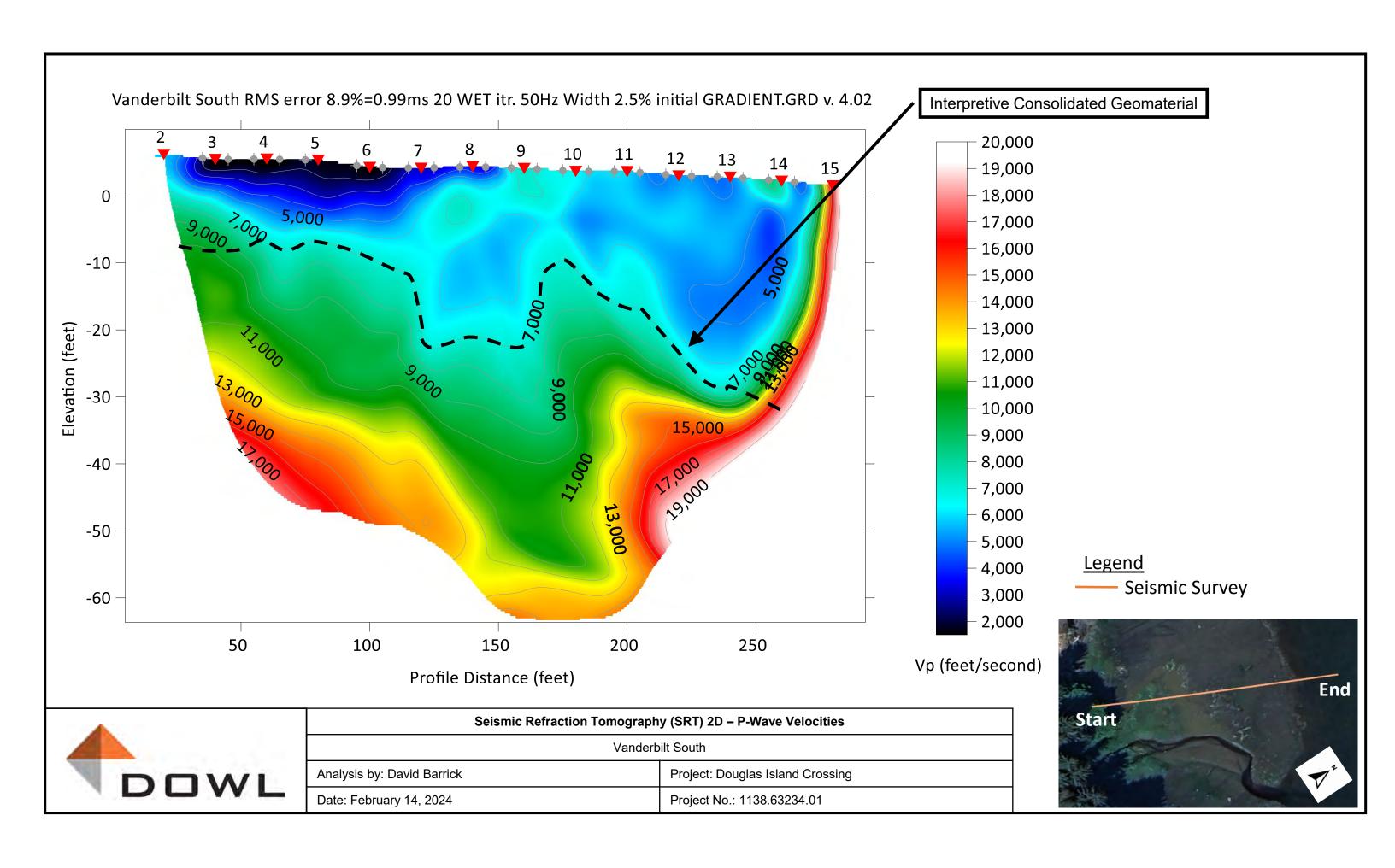
Average Vs to 100ft = 1010.0 ft/sec

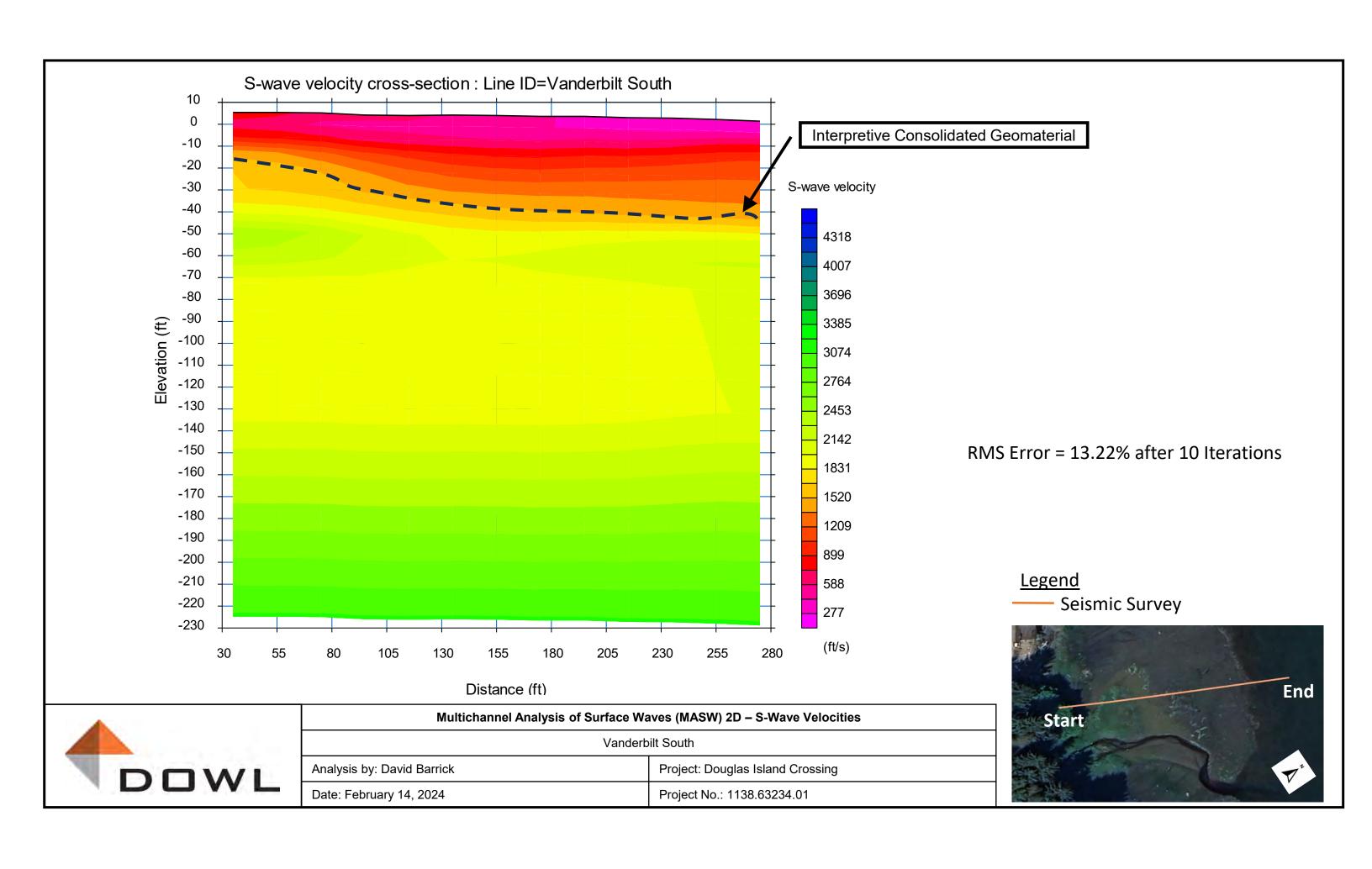
Multichannel Analysis of Surface Waves (MASW) 1D – Vanderbilt North – Shot 5015	
Vanderbilt North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities
Blow Counts

MASW 1D Profile Location Seismic Survey

RMS Error = 6.27% after 10 Iterations Average Vs to 100 feet = 988.7 ft/sec


Multichannel Analysis of Surface Waves (MASW) 1D – Vanderbilt North – Shot 5016	
Vanderbilt North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01


Vanderbilt North – MASW 1D Results			
Geophysical Investigation			
Shot File Number	Vs100 (feet/second)	Site Class	
5,001	952.6	D	
5,002	982.4	D	
5,015	1,010.0	D	
5,016	988.7	D	

AASHTO LRFD TABLE 3.10.3.1-1 – Site Classification		
Site Class	Rock/Soil Type	Sum of Vs Calculated Using 1D Shear Wave Velocities (feet per second)
А	Hard Rock	>5,000
В	Rock	2,500 to 5,000
С	Very Dense Soil and Soil Rock	1,200 to 2,500
D	Stiff Soil	600 to 1,200
E	More Than 10 Feet of Soft Clay	<600
F	Soils Requiring Site Specific Evaluations	See LRFD Table 3.10.3.1-1

Multichannel Analysis of Surface Waves (MASW) 1D – Summary of Results		
Vanderbilt North		
Analysis by: David Barrick	Project: Douglas Island Crossing	
Date: June 3, 2024	Project No.: 1138.63234.01	

RMS Error = 9.56% after 10 Iterations

Average Vs to 100 feet = 1,176.0 ft/sec


Legend

S-wave Velocities
Blow Counts

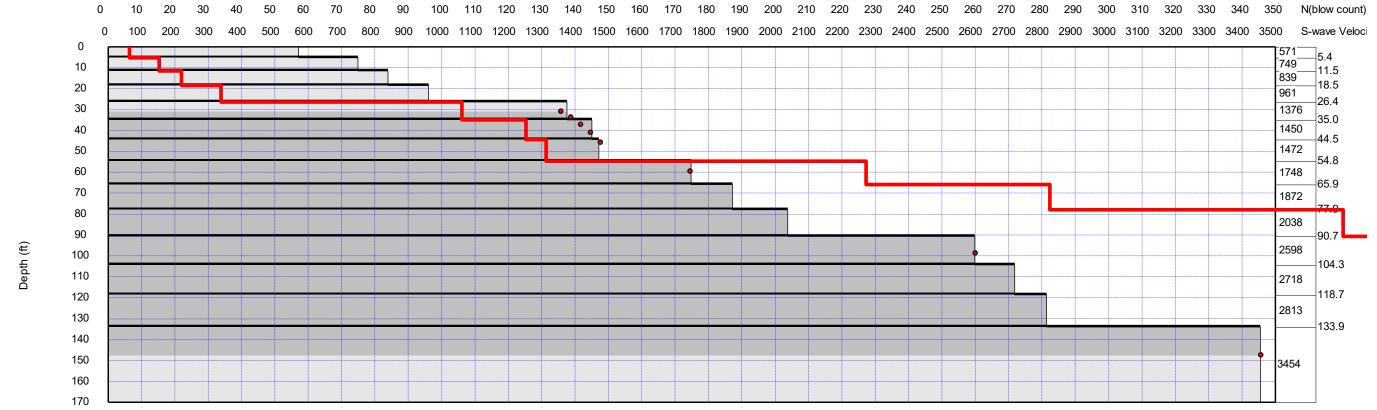
MASW 1D Profile L

Blow Counts

MASW 1D Profile Location
Seismic Survey

Average Vs to 100ft = 1176.0 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D - Vanderbilt South - Shot 4001		
Vanderbilt South		
Analysis by: David Barrick	Project: Douglas Island Crossing	
Date: February 14, 2024	Project No.: 1138.63234.01	

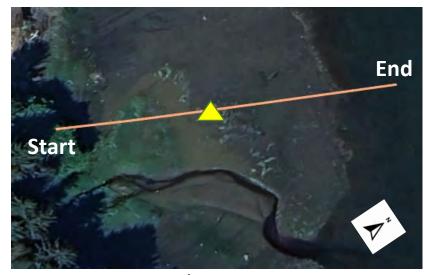

RMS Error = 6.41% after 10 Iterations

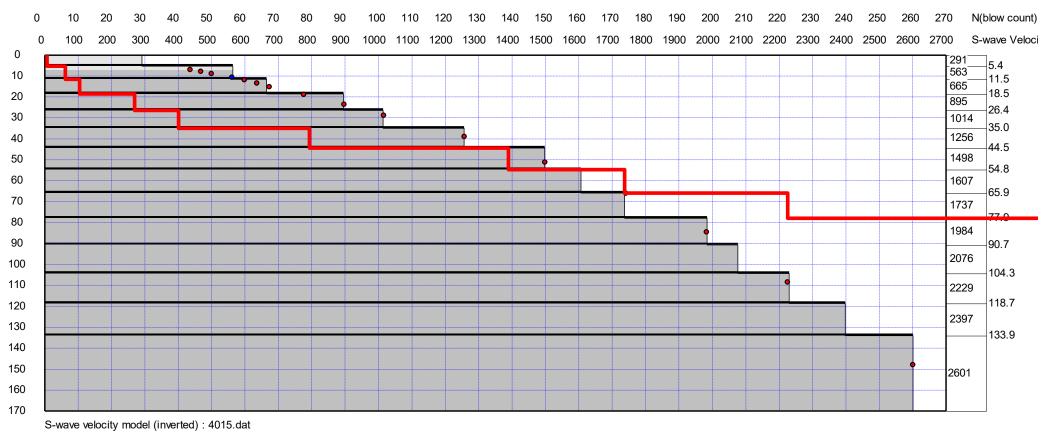
Average Vs to 100 feet = 1,306.5 ft/sec

Legend

S-wave Velocities
Blow Counts
MASW 1D Profile Location
Seismic Survey

S-wave velocity model (inverted) : 4002.dat


Average Vs to 100ft = 1306.5 ft/sec



Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek North – Shot 4002	
Vanderbilt South	
Analysis by: David Barrick Project: Douglas Island Crossing	
Date: February 14, 2024	Project No.: 1138.63234.01

RMS Error = 7.16% after 10 Iterations

Average Vs to 100 feet = 1,038.2 ft/sec

Legend

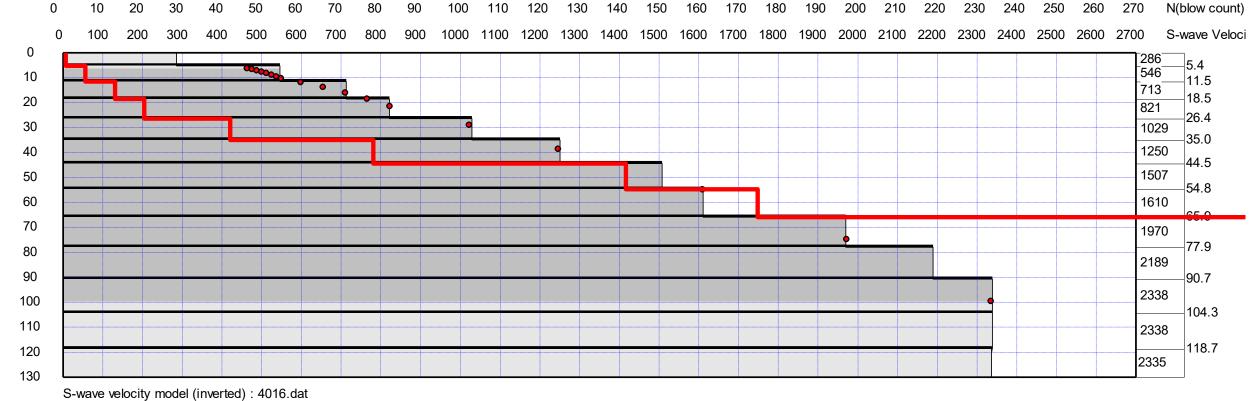
S-wave VelocitiesBlow CountsMASW 1D Profile Location

Seismic Survey

Average Vs to 100ft = 1038.2 ft/sec

Depth (ft)


Multichannel Analysis of Surface Waves (MASW) 1D – Vanderbilt South – Shot 4015		
Vanderbilt South		
	Analysis by: David Barrick	Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01

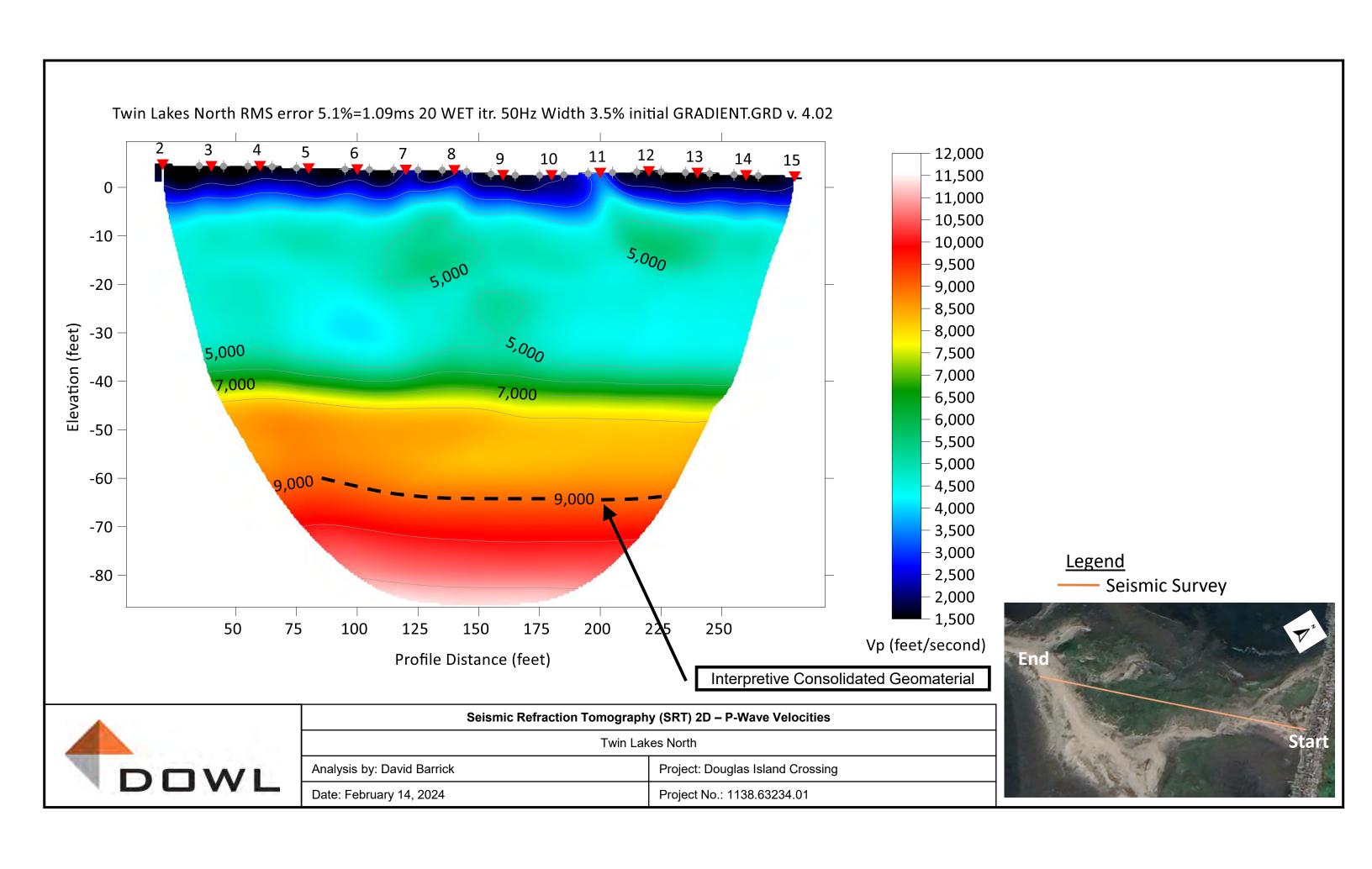

RMS Error = 11.78% after 10 Iterations

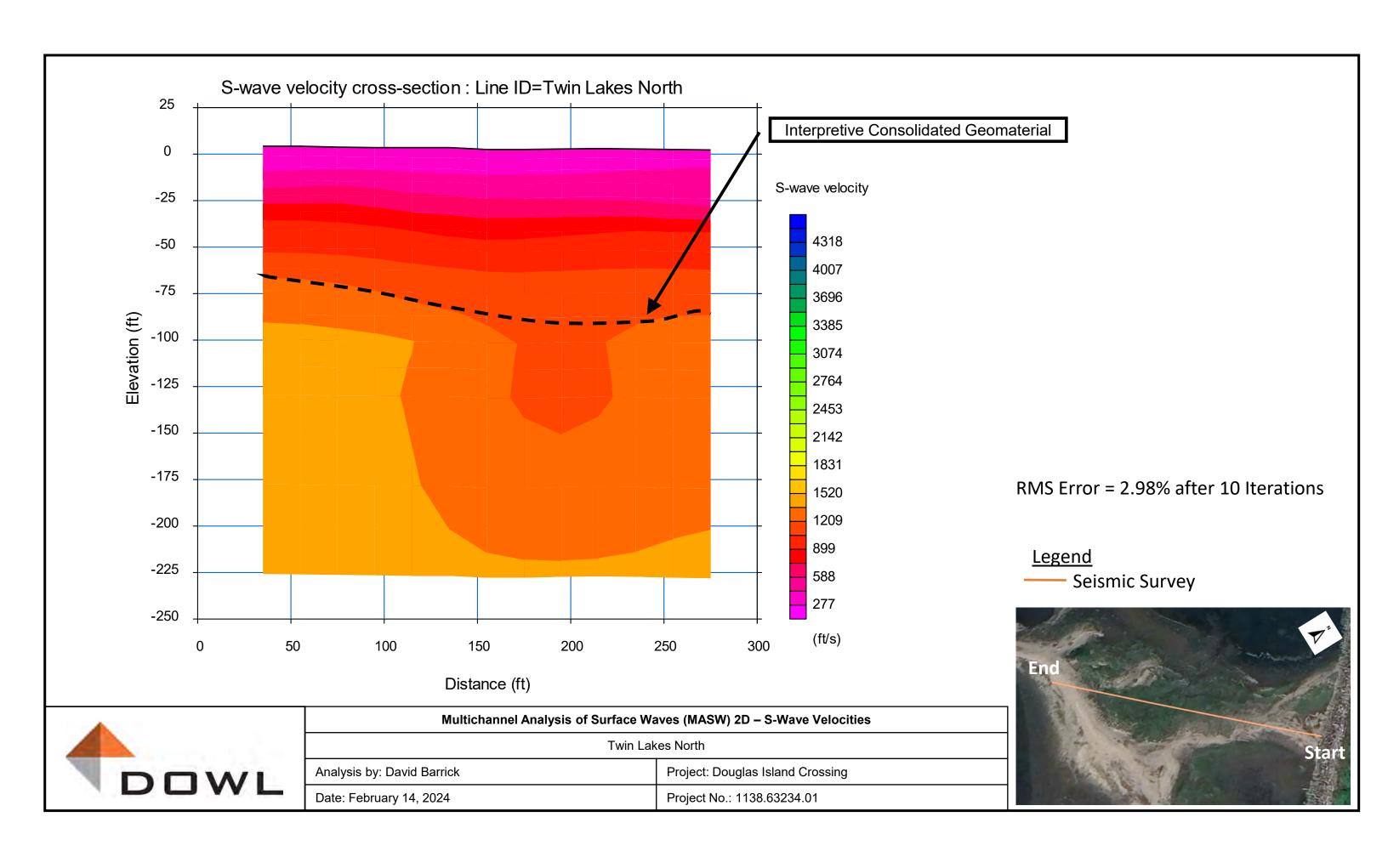
Average Vs to 100 feet = 1,052.8 ft/sec

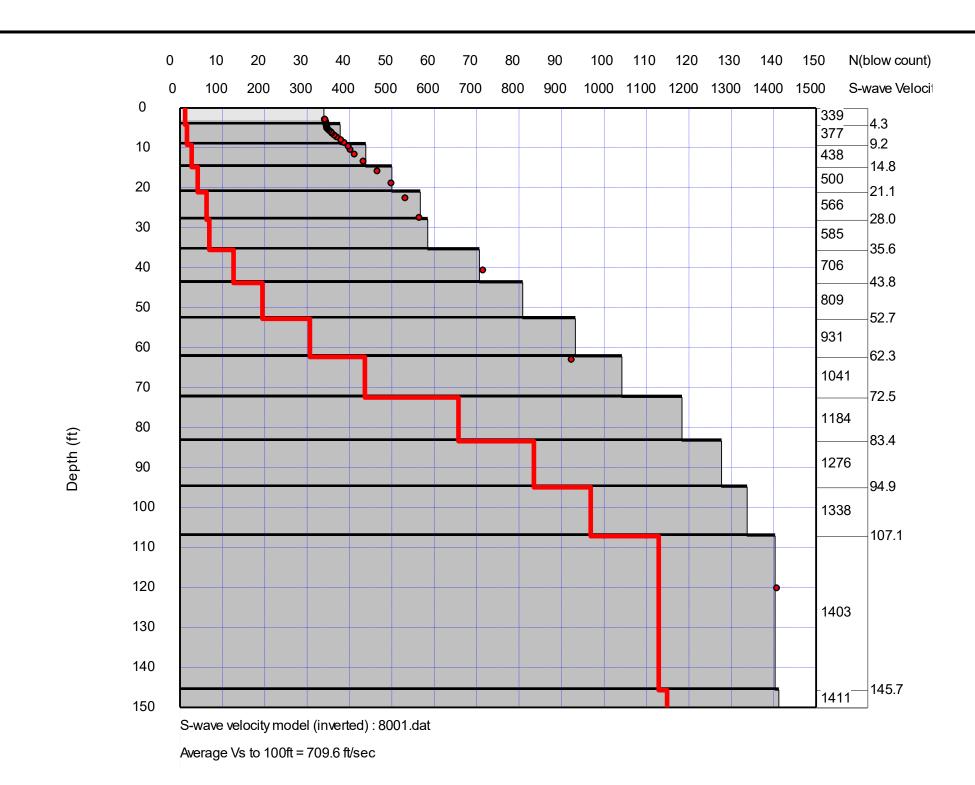
<u>Legend</u>

S-wave VelocitiesBlow CountsMASW 1D Profile LocationSeismic Survey

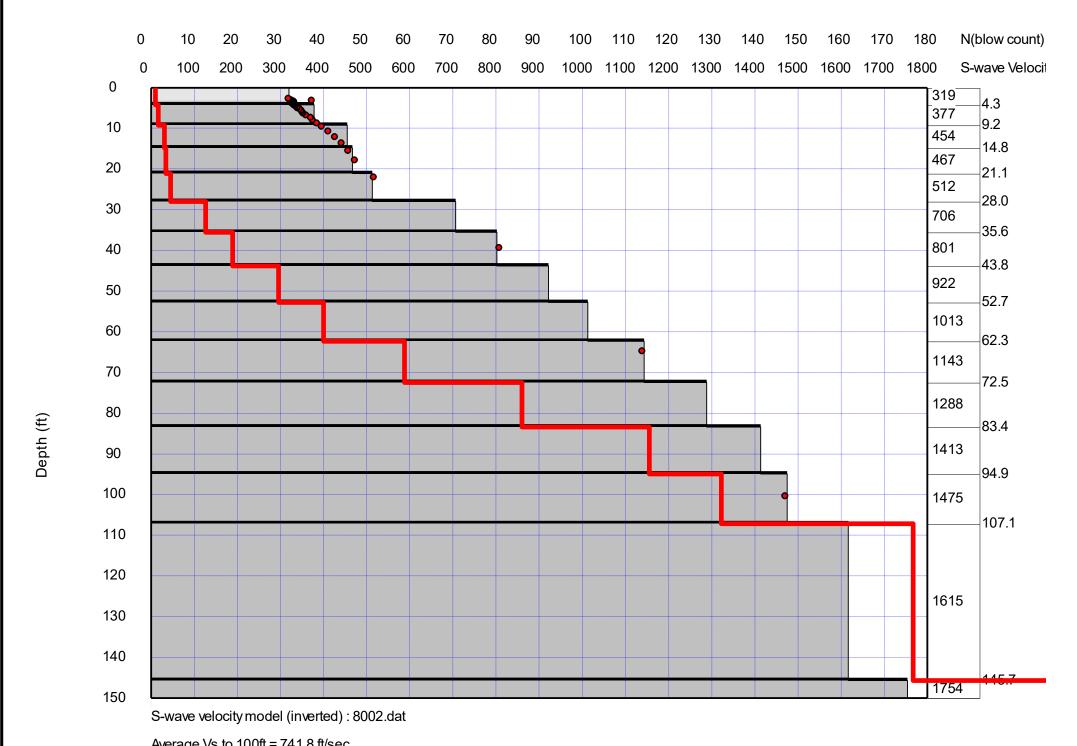
Average Vs to 100ft = 1052.8 ft/sec


Multichannel Analysis of Surface Waves (MASW) 1D - Vanderbilt South - Shot 4016	
Vanderbilt South	
Analysis by: David Barrick Project: Douglas Island Crossing	
Date: February 14, 2024	Project No.: 1138.63234.01


Vanderbilt South – MASW 1D Results			
Ge	Geophysical Investigation		
Shot File Number	Vs100 (feet/second)	Site Class	
4,001	1,176.0	D	
4,002	1,306.5	С	
4,015	1,038.2	D	
4,016	1,052.8	D	


AASHTO LRFD TABLE 3.10.3.1-1 – Site Classification		
Site Class	Rock/Soil Type	Sum of Vs Calculated Using 1D Shear Wave Velocities (feet per second)
А	Hard Rock	>5,000
В	Rock	2,500 to 5,000
С	Very Dense Soil and Soil Rock	1,200 to 2,500
D	Stiff Soil	600 to 1,200
Е	More Than 10 Feet of Soft Clay	<600
F	Soils Requiring Site Specific Evaluations	See LRFD Table 3.10.3.1-1

Multichannel Analysis of Surface Waves (MASW) 1D – Summary of Results	
Vanderbilt South	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: June 3, 2024	Project No.: 1138.63234.01


S-wave Velocities
Blow Counts

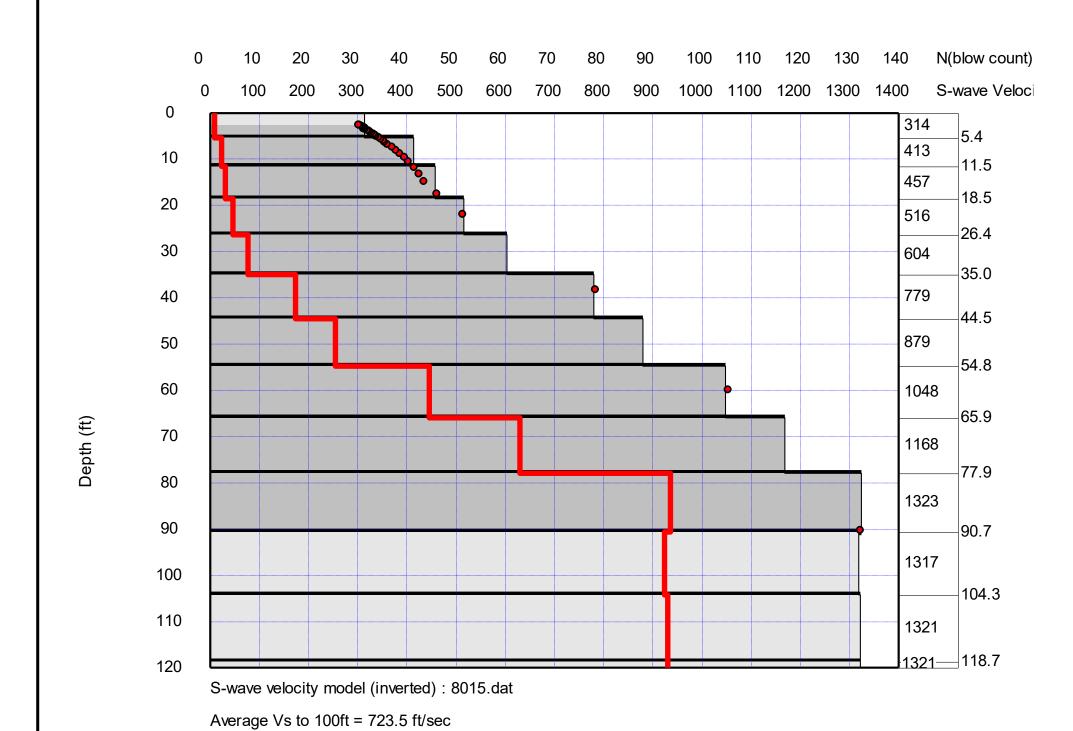
MASW 1D Profile Location Seismic Survey

RMS Error = 3.85% after 10 Iterations
Average Vs to 100 feet = 709.6 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D – Twin Lakes North – Shot 8001	
Twin Lakes North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities **Blow Counts**

MASW 1D Profile Location Seismic Survey

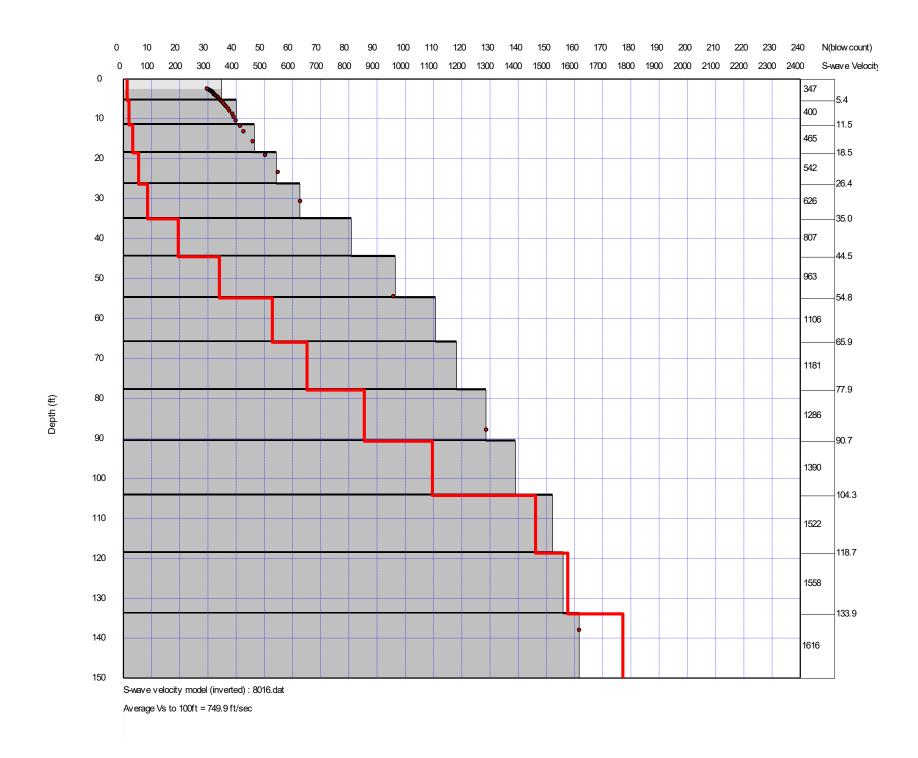

RMS Error = 6.91% after 10 Iterations

Average Vs to 100 feet = 741.8 ft/sec

Average Vs to 100ft = 741.8 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D – Twin Lakes North – Shot 8002	
Twin Lakes North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities
Blow Counts


MASW 1D Profile Location Seismic Survey

RMS Error = 5.35% after 10 Iterations

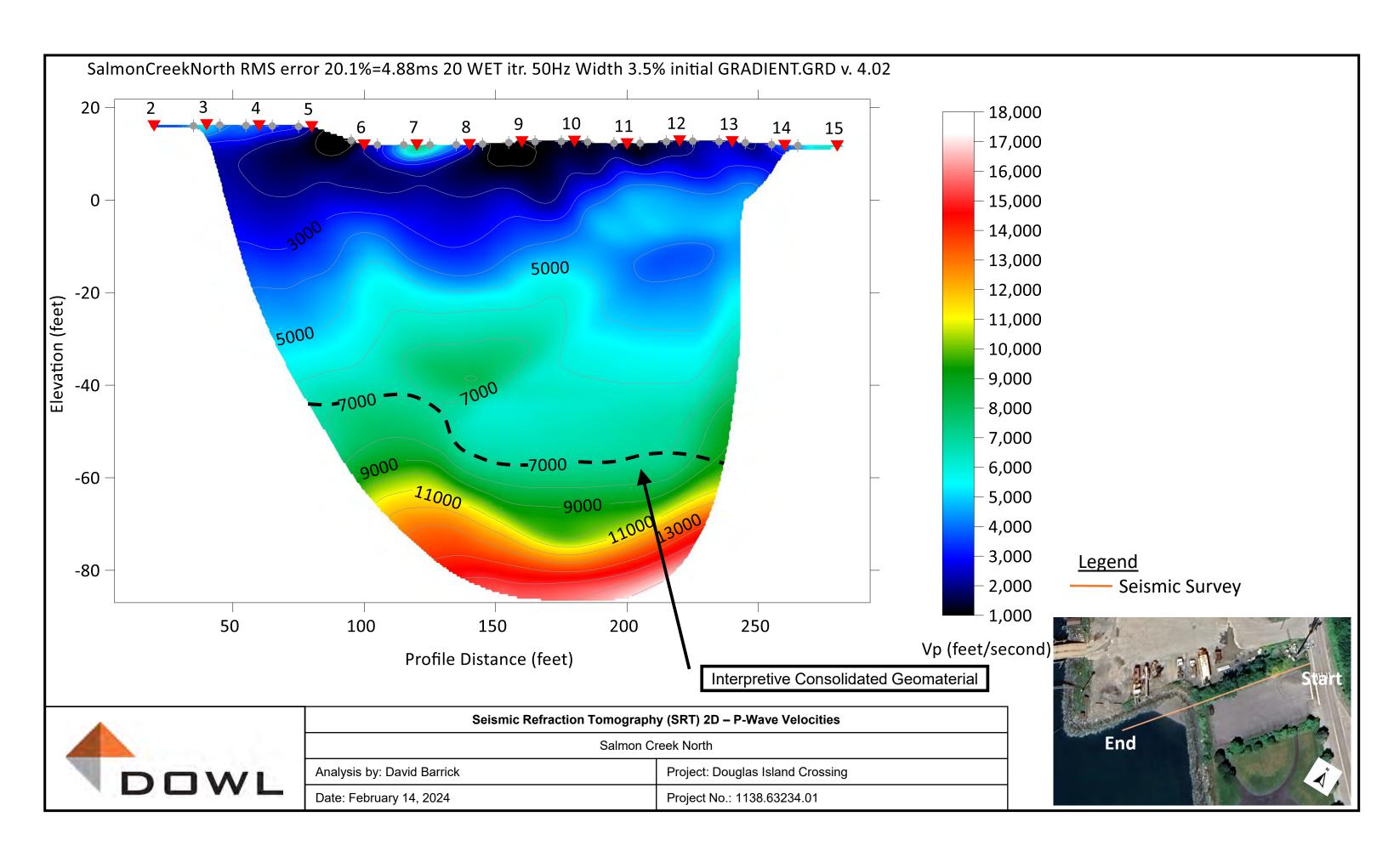
Average Vs to 100 feet = 723.5 ft/sec

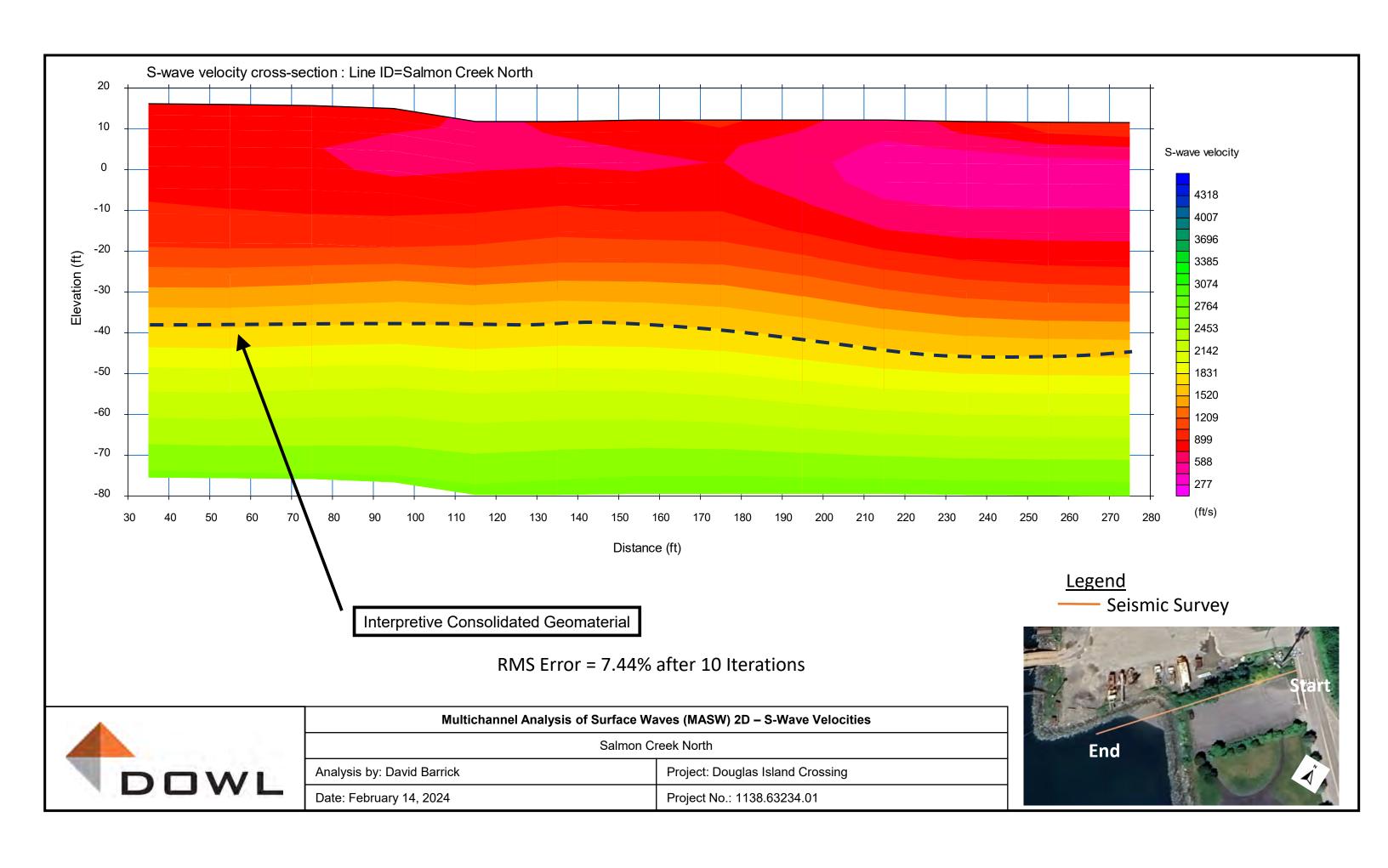
	Multichannel Analysis of Surface Waves (MASW) 1D – Twin Lakes North – Shot 8015	
Twin Lakes North		es North
	Analysis by: David Barrick	Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01

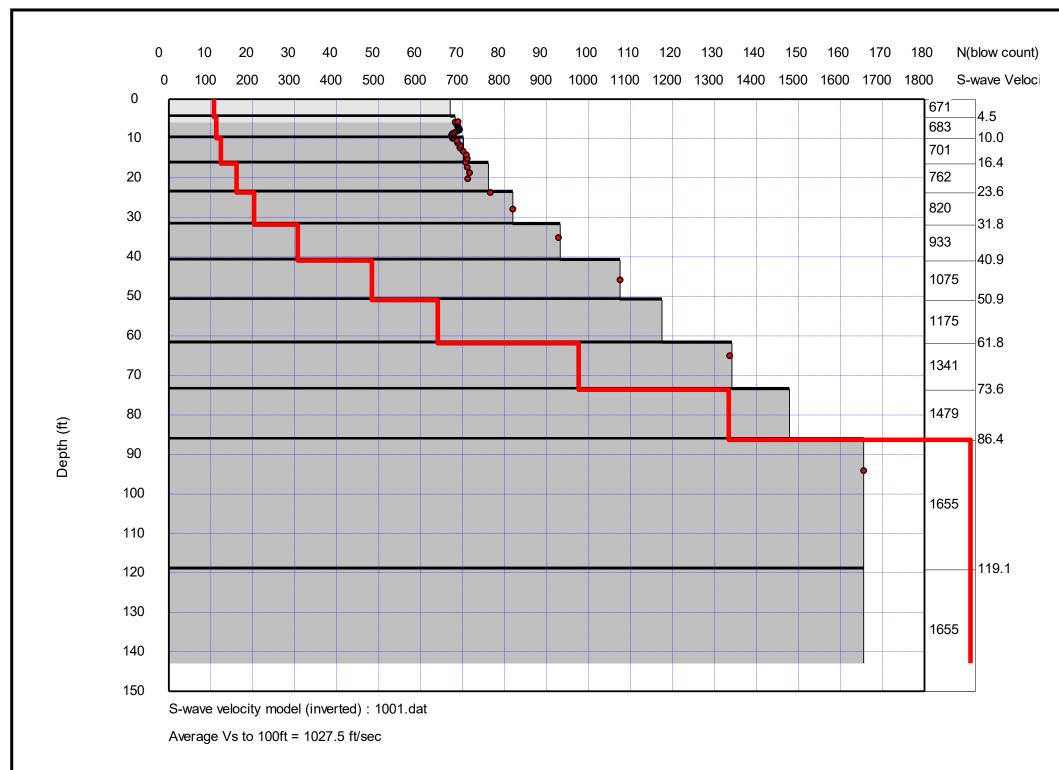
S-wave Velocities
Blow Counts

MASW 1D Profile Location Seismic Survey

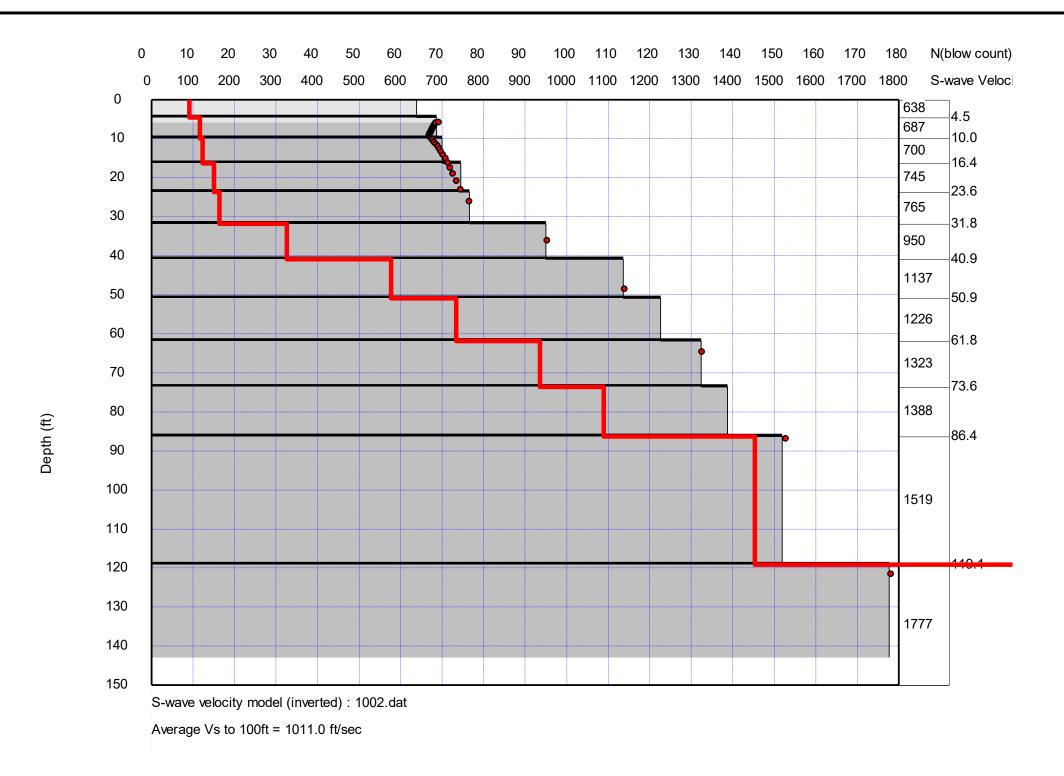
RMS Error = 2.20% after 10 Iterations Average Vs to 100 feet = 625.3 ft/sec


Multichannel Analysis of Surface Waves (MASW) 1D – Twin Lakes North – Shot 8016	
Twin Lakes North	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01


Twin Lakes North – MASW 1D Results			
Ge	Geophysical Investigation		
Shot File Number	Vs100 (feet/second)	Site Class	
8,001	709.6	D	
8,002	712.1	D	
8,015	723.5	D	
8,016	749.9	D	


AASHTO LRFD TABLE 3.10.3.1-1 – Site Classification		
Site Class	Rock/Soil Type	Sum of Vs Calculated Using 1D Shear Wave Velocities (feet per second)
А	Hard Rock	>5,000
В	Rock	2,500 to 5,000
С	Very Dense Soil and Soil Rock	1,200 to 2,500
D	Stiff Soil	600 to 1,200
E	More Than 10 Feet of Soft Clay	<600
F	Soils Requiring Site Specific Evaluations	See LRFD Table 3.10.3.1-1

Multichannel Analysis of Surface Waves (MASW) 1D – Summary of Results	
Twin Lakes North	
Analysis by: David Barrick Project: Douglas Island Crossing	
Date: June 3, 2024	Project No.: 1138.63234.01


S-wave Velocities
Blow Counts

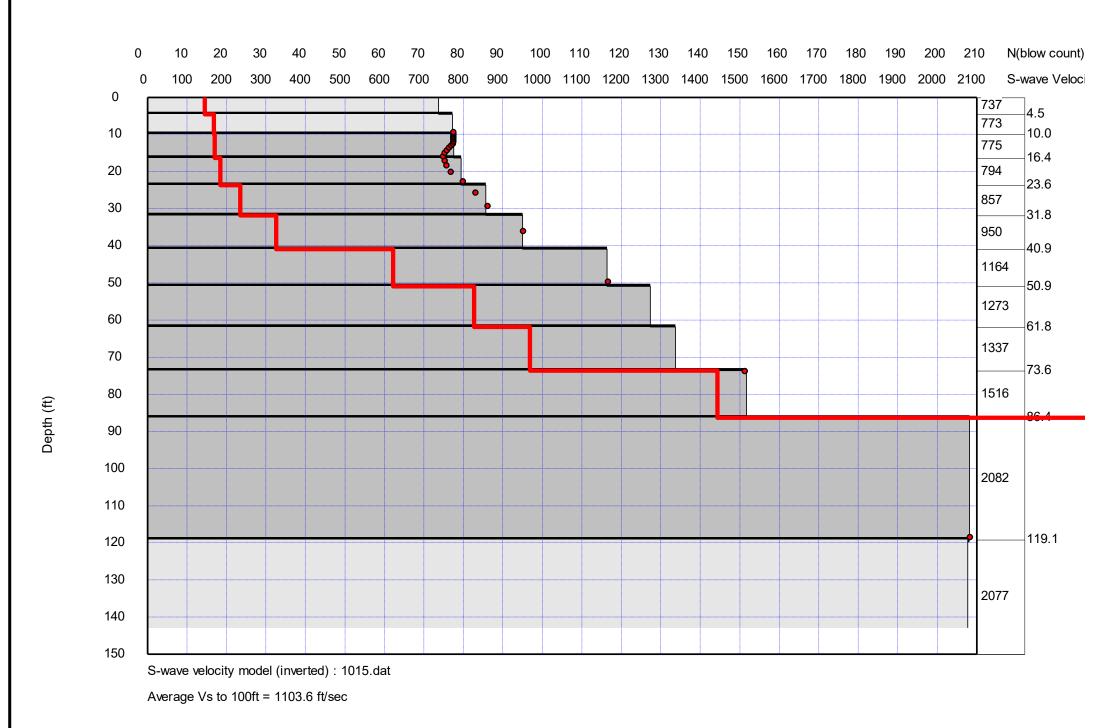
MASW 1D Profile Location Seismic Survey

RMS Error = 2.68% after 10 Iterations
Average Vs to 100 feet = 1,027.5 ft/sec

	Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek North – Shot 1001	
Salmon Creek North		reek North
	Analysis by: David Barrick	Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities
Blow Counts

MASW 1D Profile Location

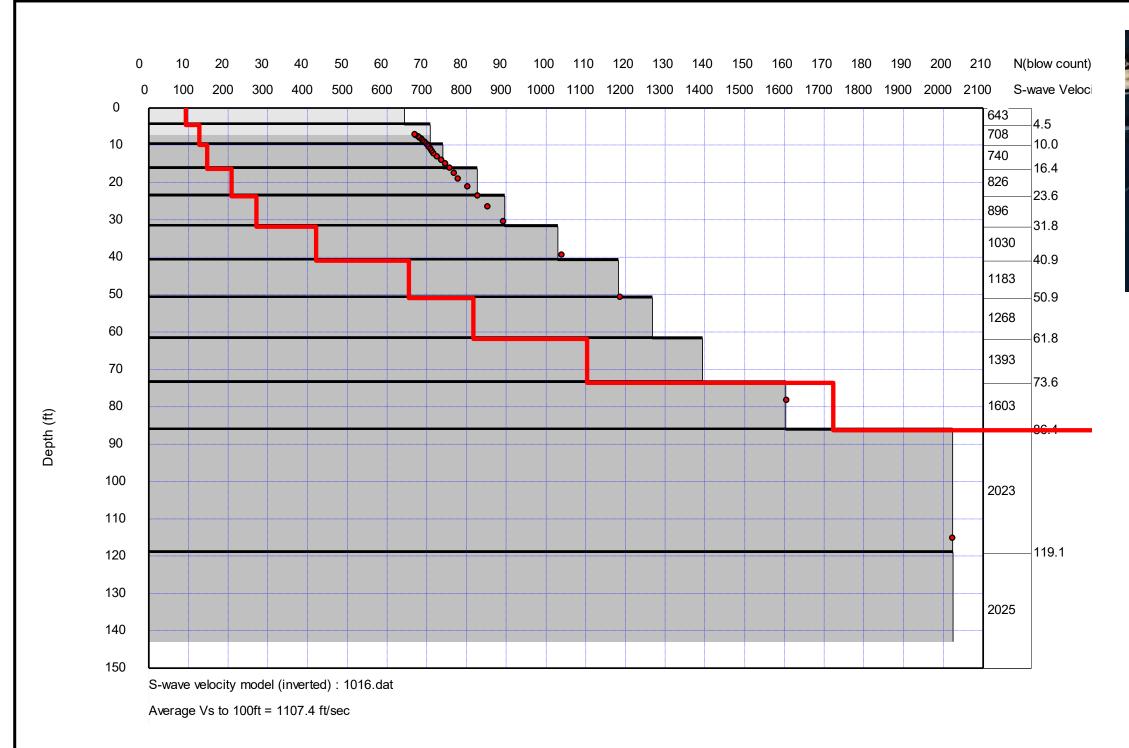

Seismic Survey

RMS Error = 2.41% after 10 Iterations

Average Vs to 100 feet = 1,011.0 ft/sec

	Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek North – Shot 1002	
Salmon Creek North		reek North
	Analysis by: David Barrick	Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities
Blow Counts


MASW 1D Profile Location Seismic Survey

RMS Error = 3.15% after 10 Iterations

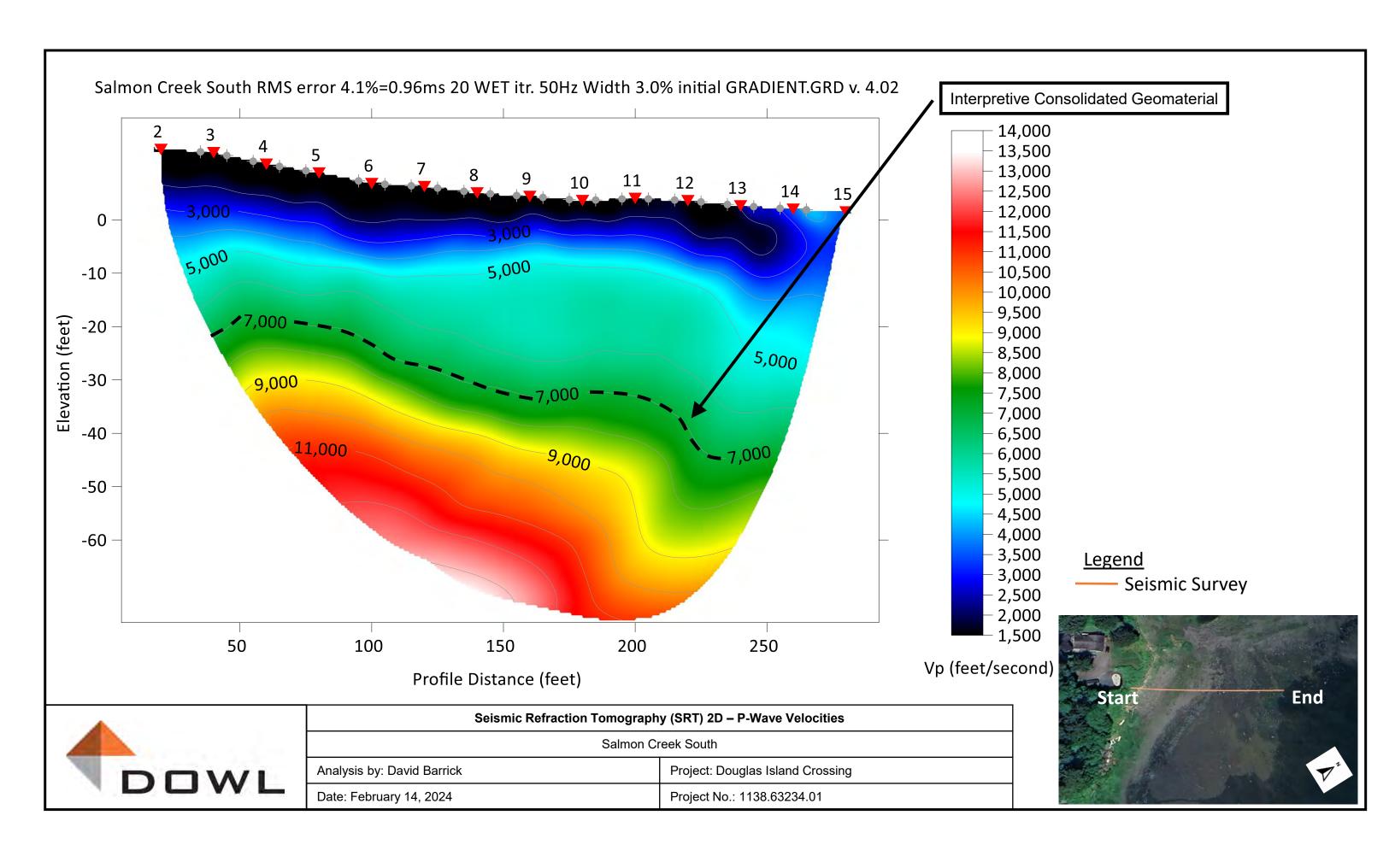
Average Vs to 100 feet = 1,103.6 ft/sec

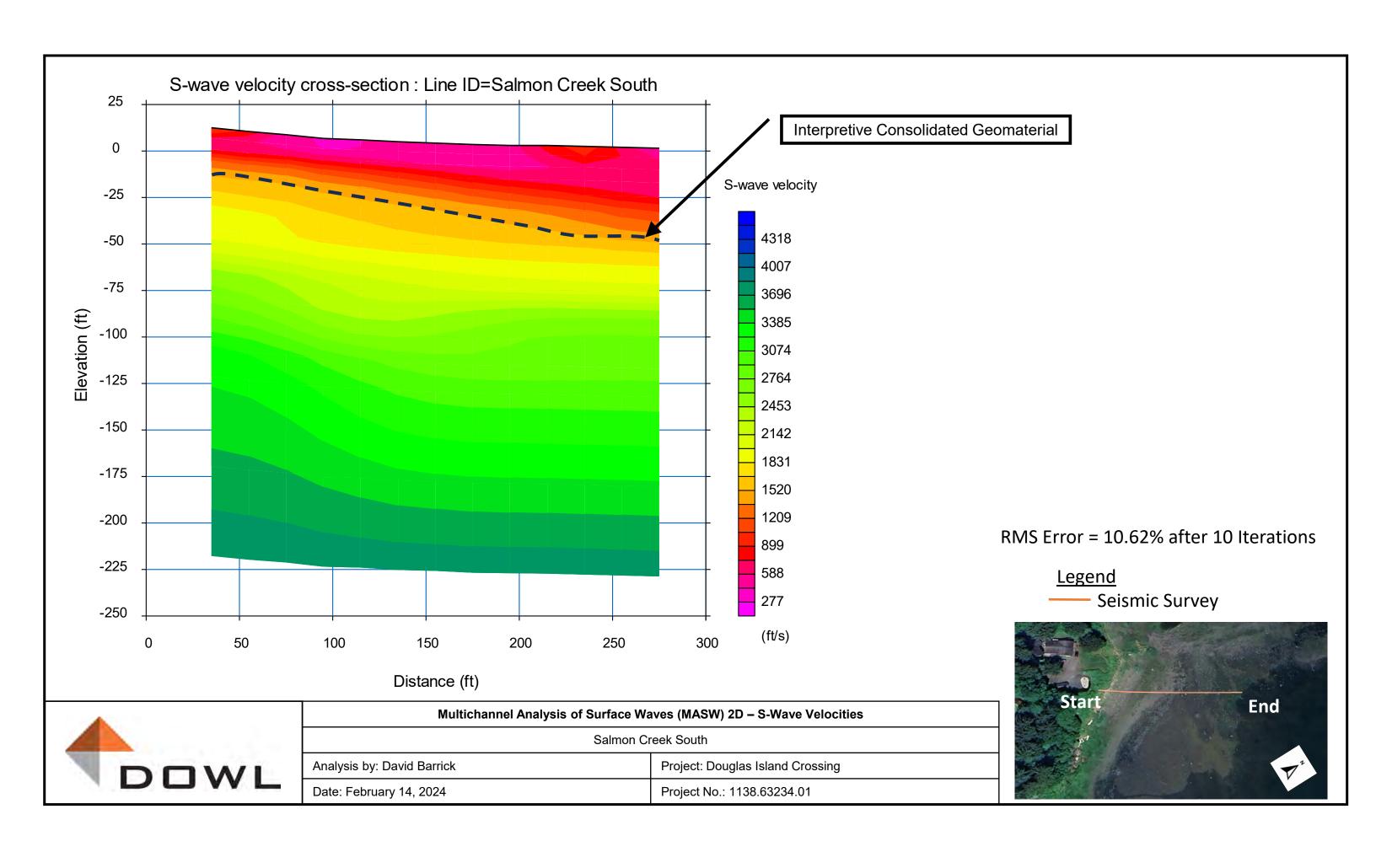
Multichannel Analysis of Surface Waves (N	IASW) 1D – Salmon Creek North – Shot 1015
Salmon Creek North	
Analysis by: David Barrick Project: Douglas Island Crossing	
Date: February 14, 2024 Project No.: 1138.63234.01	

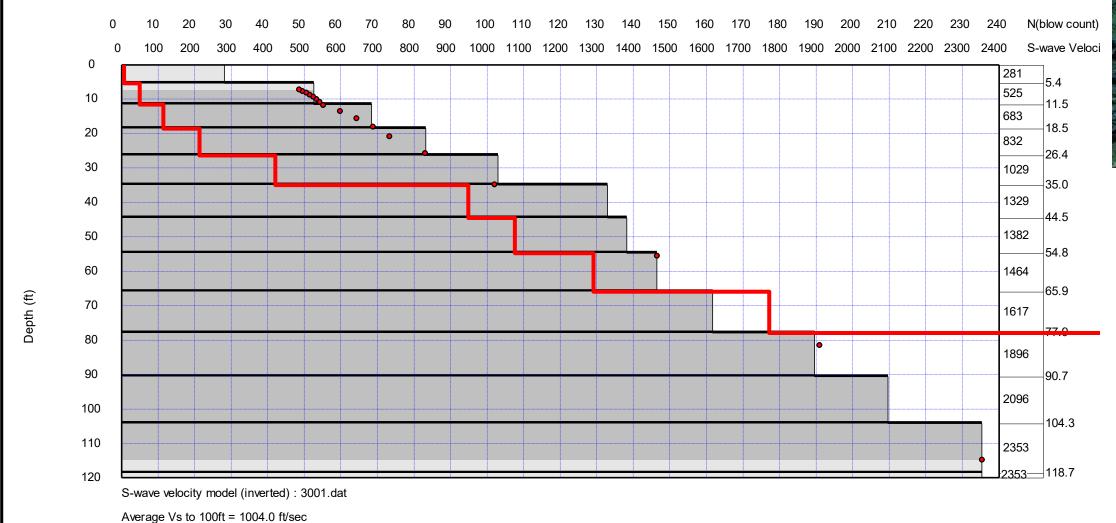
S-wave Velocities
Blow Counts

MASW 1D Profile Location Seismic Survey

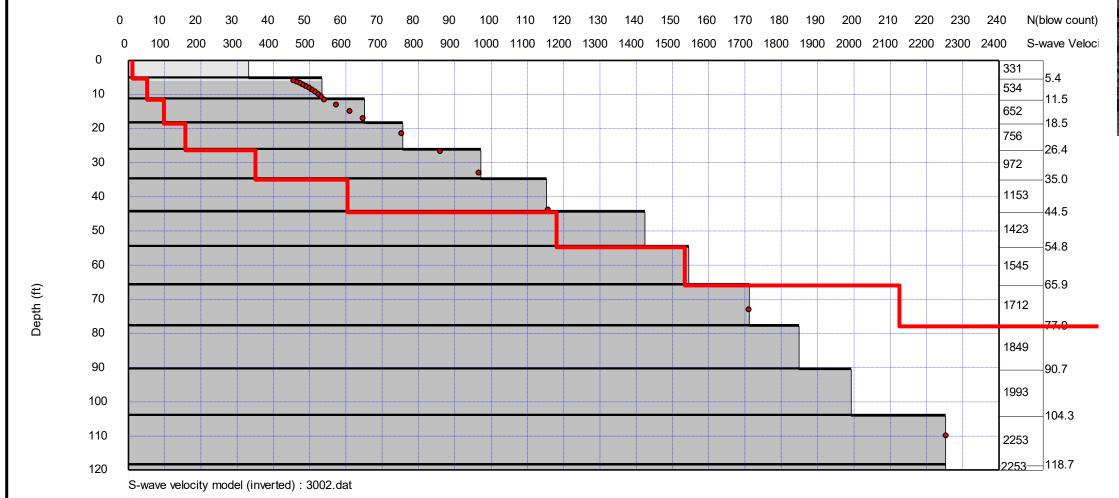
RMS Error = 4.26% after 10 Iterations
Average Vs to 100 feet = 1,107.4 ft/sec


	Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek North – Shot 1016	
Salmon Creek North		reek North
	Analysis by: David Barrick	Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01


Salmon Creek North – MASW 1D Results		
Ge	eophysical Investig	ation
Shot File Vs100 Number (feet/second)		Site Class
1001	1,027.5	D
1002	1,011.0	D
1015	1,103.6	D
1016	1,107.4	D


AASHTO LRFD TABLE 3.10.3.1-1 – Site Classification		ite Classification
Site Class	Rock/Soil Type	Sum of Vs Calculated Using 1D Shear Wave Velocities (feet per second)
А	Hard Rock	>5,000
В	Rock	2,500 to 5,000
С	Very Dense Soil and Soil Rock	1,200 to 2,500
D	Stiff Soil	600 to 1,200
Е	More Than 10 Feet of Soft Clay	<600
F	Soils Requiring Site Specific Evaluations	See LRFD Table 3.10.3.1-1

Multichannel Analysis of Surface Waves (MASW) 1D – Summary of Results	
Salmon Creek North	
Analysis by: David Barrick Project: Douglas Island Crossing	
Date: June 3, 2024	Project No.: 1138.63234.01


S-wave Velocities **Blow Counts**

MASW 1D Profile Location Seismic Survey

RMS Error = 11.85% after 10 Iterations Average Vs to 100 feet = 1,004.0 ft/sec

Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek South – Shot 3001	
Salmon Creek South	
Analysis by: David Barrick	Project: Douglas Island Crossing
Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities


Blow Counts
MASW 1D Profile Location
Seismic Survey

RMS Error = 12.00% after 10 Iterations
Average Vs to 100 feet = 1,010.7 ft/sec

Average Vs to 100ft = 1010.7 ft/sec

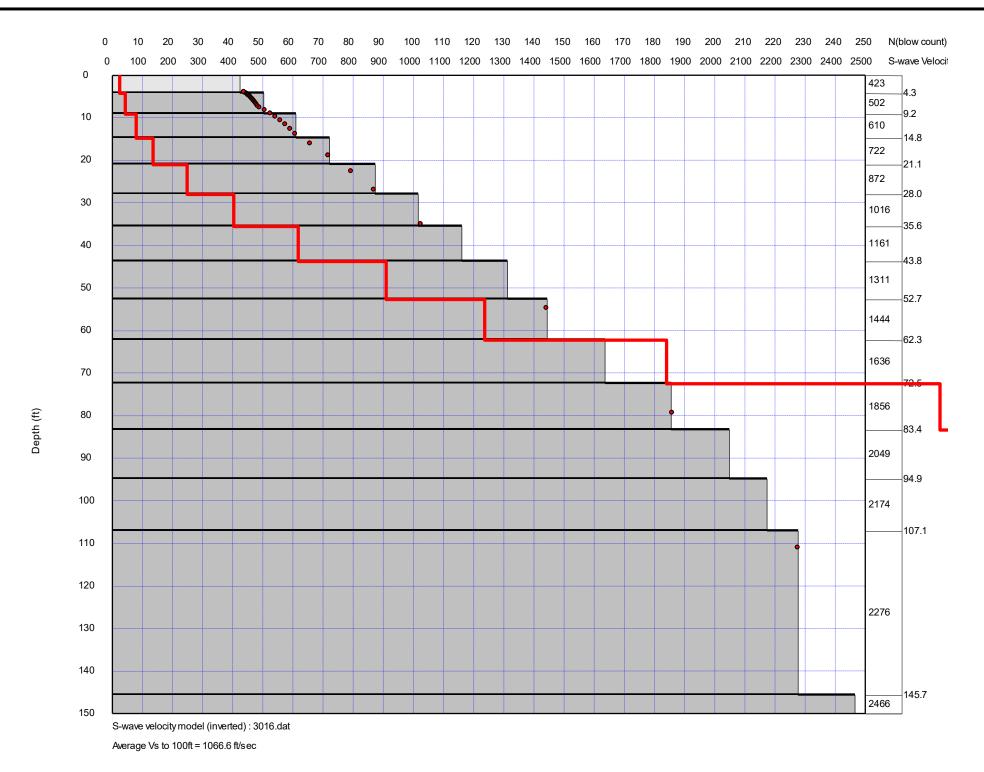
	Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek South – Shot 3002	
Salmon Creek South		reek South
	Analysis by: David Barrick	Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01

Start End

<u>Legend</u>

S-wave Velocities
Blow Counts

MASW 1D Profile Location Seismic Survey


Average Vs to 100ft = 1044.9 ft/sec

RMS Error = 6.34% after 10 Iterations

Average Vs to 100 feet = 1,044.9 ft/sec

	Multichannel Analysis of Surface Waves (MASW) 1D – Salmon Creek South – Shot 3015	
Salmon Creek South		reek South
Analysis by: David Barrick Project: Douglas Island Crossing		Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01

S-wave Velocities
Blow Counts

MASW 1D Profile Location Seismic Survey

RMS Error = 5.75% after 10 Iterations

Average Vs to 100 feet = 1,066.6 ft/sec

	Multichannel Analysis of Surface Waves (Ma	ASW) 1D – Salmon Creek South – Shot 3016
Salmon Creek South		reek South
Analysis by: David Barrick Project: Douglas Island Crossing		Project: Douglas Island Crossing
	Date: February 14, 2024	Project No.: 1138.63234.01

Salmon Creek South – MASW 1D Results				
Geophysical Investigation				
Shot File Number	Vs100 (feet/second)	Site Class		
3,001	1,004.0	D		
3,002	1,010.7	D		
3,015	1,044.9	D		
3,016	1,066.6	D		

AASHTO LRFD TABLE 3.10.3.1-1 – Site Classification		
Site Class	Rock/Soil Type	Sum of Vs Calculated Using 1D Shear Wave Velocities (feet per second)
А	Hard Rock	>5,000
В	Rock	2,500 to 5,000
С	Very Dense Soil and Soil Rock	1,200 to 2,500
D	Stiff Soil	600 to 1,200
Е	More Than 10 Feet of Soft Clay	<600
F	Soils Requiring Site Specific Evaluations	See LRFD Table 3.10.3.1-1

Multichannel Analysis of Surface Waves (MASW) 1D – Summary of Results		
Salmon Creek South		
Analysis by: David Barrick	Project: Douglas Island Crossing	
Date: June 3, 2024	Project No.: 1138.63234.01	

Technical Memorandum

Visual Assessment

To: Greg Lockwood, PE., Project Manager, Alaska Department of Transportation and Public Facilities

From: Colleen Wolfe, Landscape Architect, DOWL

Date: February 16, 2025

Project: Juneau Douglas North Crossing PEL Study

Project Numbers: SFHWY00299/0003259

PEL Study Description

The Alaska Department of Transportation and Public Facilities (DOT&PF) in cooperation with City and Borough of Juneau (CBJ) is studying a possible transportation corridor to connect Juneau with the north end of Douglas Island. A connection has been studied since the 1980s but has not progressed beyond identification and recommendation of preliminary alternative alignments. The previous studies highlighted several reasons for a north crossing:

- Congestion during peak periods on the existing Douglas Island Bridge
- Concerns about safety and emergency response in the event of a bridge closure
- The potential for residential, commercial, industrial, and port development at west Douglas Island

DOT&PF has chosen to use the Planning and Environmental Linkages (PEL) process to identify and evaluate a purpose and need (P&N) and recommend alternatives for connecting Juneau with the northern end of Douglas Island. The PEL process will provide opportunities for public input and involvement. The analyses conducted may be incorporated into a future National Environmental Policy Act (NEPA) process.

Purpose

This memorandum is an initial step in the development of the proposed alternatives for the Juneau Douglas North Crossing PEL Study (Project Numbers: SFHWY00299/0003259). It is intended to provide a summary of visual analysis based on the methodology defined in the US Department of Transportation Federal Highway Administration's Guidelines for the Visual Impact Assessment (VIA) of Highway Projects. These guidelines provide the basis for evaluating context sensitive solutions for federal transportation projects.

The photorealistic simulations provided as a part of this technical memorandum serve to provide an approximate graphical representation of the impact on the visual resource at each crossing location. Since a VIA is usually conducted a part of compliance with NEPA, these simulations included with this technical

memorandum can be later evaluated as a part of a future environmental review process. This future assessment of visual resource impacts may include but are not limited to the following:

- Parks and recreation facilities, specifically impacts on properties protected by Section 4(f) of the Department of Transportation Act of 1966, and 6(f) of the Land and Water Conservation Act
- Historic and archaeological resources, including impacts on properties protected under Section 106 of the National Historic Preservation Act
- Other protected or iconic cultural resources such as scientific or natural areas, scenic byways, routes and vistas
- Vegetation, wildlife, ecological communities and protected landscapes, specifically impacts on wetlands, threatened and endangered species, wildlife refuges, and farmland

Study Area

The study area boundary is shown in Figure 1. It encompasses the area where prior studies and community outreach identified potential alternative crossing locations as indicated in Figure 2.

Figure 1: Study Area

Following preliminary alternative analysis, six potential crossing locations were found to meet the project Purpose and Need and were advanced to detailed alternative development and environmental screening (Figure 2). The visual analysis is intended to support the environmental screening to support the selection of alternatives recommended to advance to a NEPA review.

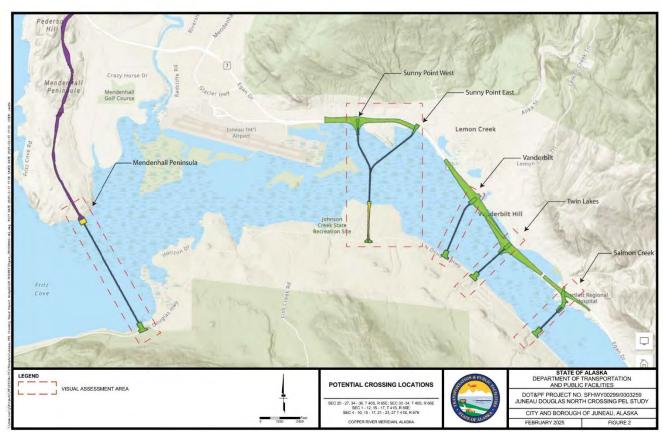


Figure 2: Potential Crossing Locations

Data Collection Sources

Data was collected to identify existing conditions at the six potential crossing locations within the study area as indicated in Figure 2. Data collection and base mapping was derived from the following public documents or sources:

- Aerial imagery from Google Earth (2024)
- Aerial imagery from Bing Maps (2024)
- Maxar and TomTom mapping software from Google Earth and Bing Maps (2024)
- Geographic Information System (ArcGIS) mapping
- Alaska Fisheries NOAA (National Oceanic and Atmospheric Administration) Shore Zone flight data (2024)

 January 2024 field photography using a Canon 7D DSLR camera with a 55 mm lens with additional photography obtained with a Samsung S22 Ultra

Simulation Software

The software used to generate the photo simulations include:

- ArcGIS
- Autodesk Civil 3D
- Autodesk Infraworks
- Sketchup Pro
- Chaos Engine Enscape
- Adobe Illustrator
- Adobe Photoshop
- Adobe Lightroom
- Bluebeam Revu 21

Simulation Methodology

Existing site and street imagery photographed during Juneau's summer season in 2023 was collected from the Google Earth Pro database. Based on the viewpoints and view corridors established in the Google Earth photography, winter season photography was taken by a field team in January 2024. The viewpoints in winter were established to be as close as possible to the summer photography locations so both seasons could be represented together. A Trimble TSC7 data collector connected to a Trimble R10 GNSS system was used to locate each alternative alignment. The location of each image is approximately 30 to 40 feet from the center of each potential crossing intersection alignment.

Conceptual profile designs were developed by structural engineers for each crossing location. The preliminary designs were used to model a 3D representation of each crossing structure, conveying the scale and style of each based on these conceptual alignment profiles and existing conditions. The 3D models of each crossing were constructed digitally using Sketchup Pro and Autodesk Infraworks. Using the 3D software, conceptual bent and deck locations were developed for each crossing.

An existing context model was developed using data collected from ArcGis, Bing Maps and Google Earth Pro with additional information from Alaska Fisheries NOAA flight mapping. Each 3D crossing model was then inserted and scaled into the existing context model and geolocated. Additionally, background photographs were used to convey site context and to visually represent existing conditions at each crossing location. The combination of the existing context model and conceptual crossing models allows each crossing to be graphically represented from an aerial view.

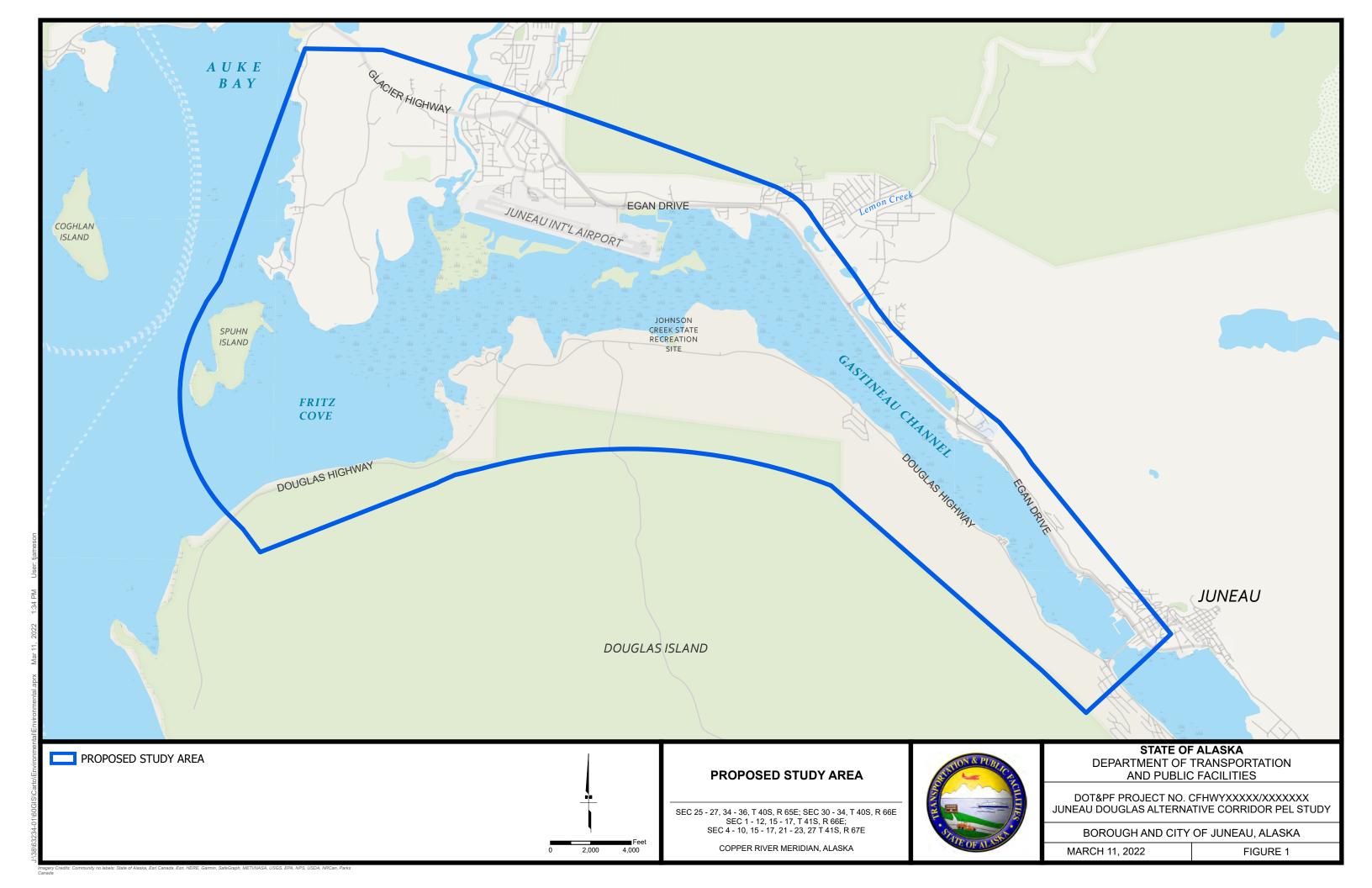
Crossing simulations were further developed to include ArcGIS layers containing existing data from publicly available data sources and information in the 2022 Juneau Douglas Island North Crossing PEL Baseline Studies. From these sources, trails, general ownership, transit stops, youth services, existing bridges, Native allotments, parks, and recreation layers were added to the simulation models. Each layer of data was available

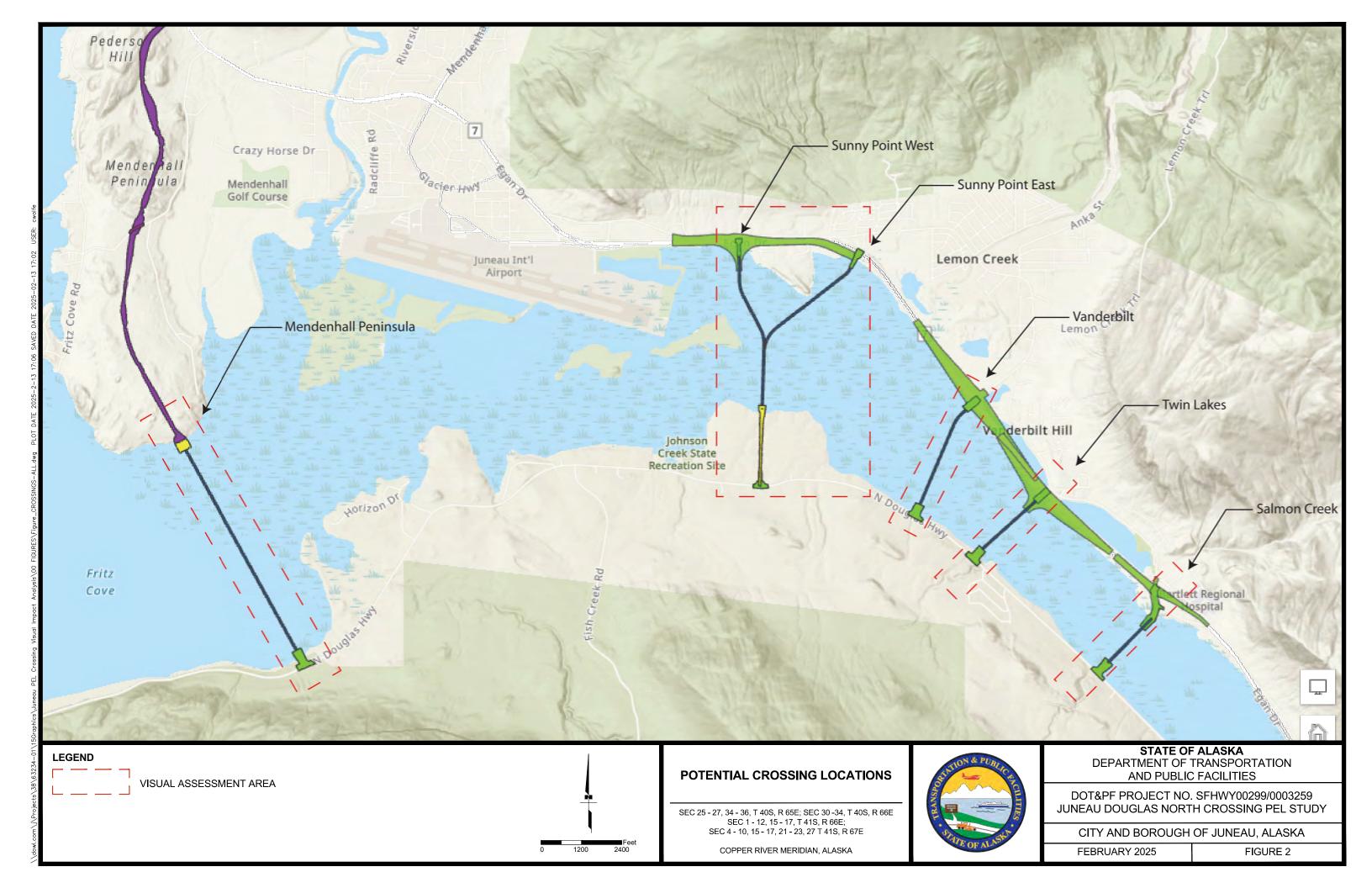
for use in XML, DWG, TIN and SHX formats. Finally, the crossing models and ArcGIS data were aligned with the State of Alaska GIS coordinate system to include existing roadways and other pertinent connection points.

To achieve photorealistic rendering attributes, SketchUp Pro with the add-on software Chaos Enscape was used to convey human-scale elements for each crossing simulation such as vehicles, buildings, roadway elements, vegetation, and other surrounding landscape features.

List of Figures

- Figure 1: Proposed Study Area
- Figure 2: Potential Crossing Locations
- Figure 3: Mendenhall Peninsula Crossing Existing Views
- Figure 4: Mendenhall Peninsula Crossing Simulations North
- Figure 5: Mendenhall Peninsula Crossing Simulations South
- Figure 6: Mendenhall Peninsula Crossing Simulation Perspective
- Figure 7: Mendenhall Peninsula Crossing Simulation Bird's Eye 1
- Figure 8: Sunny Point Crossing Existing Views West
- Figure 9: Sunny Point Crossing Simulations Northwest
- Figure 10: Sunny Point Crossing Existing Views East
- Figure 11: Sunny Point Crossing Simulations Northeast
- Figure 12: Sunny Point Crossing Simulations South
- Figure 13: Sunny Point Crossing Simulation Northwest Connection Bird's Eye 1
- Figure 14: Sunny Point Crossing Simulation Northwest Connection Bird's Eye 2
- Figure 15: Sunny Point Crossing Simulation Northeast Connection Bird's Eye 1
- Figure 16: Sunny Point Crossing Simulation Northeast Connection Bird's Eye 2
- Figure 17: Vanderbilt Crossing Existing Views
- Figure 18: Vanderbilt Crossing Simulations North
- Figure 19: Vanderbilt Crossing Simulations South
- Figure 20: Vanderbilt Crossing Simulation Bird's Eye 1
- Figure 21: Vanderbilt Crossing Simulation Bird's Eye 2
- Figure 22: Twin Lakes Crossing Existing Views
- Figure 23: Twin Lakes Crossing Simulations North
- Figure 24: Twin Lakes Crossing Simulations South
- Figure 25: Twin Lakes Crossing Simulation Bird's Eye 1
- Figure 26: Twin Lakes Crossing Simulation Bird's Eye 2
- Figure 27: Salmon Creek Crossing Existing Views
- Figure 28: Salmon Creek Crossing Simulations North
- Figure 29: Salmon Creek Crossing Simulations South
- Figure 30: Salmon Creek Crossing Simulation Bird's Eye 1


Figure 31: Salmon Creek Crossing – Simulation Bird's Eye 2


Future Analysis

Beyond the scope of this memorandum, the photo simulations provided herein can be used to support preparation of a complete VIA which is anticipated to be performed during a NEPA review. A VIA assesses changes to the degree of visual quality as being *beneficial*, *adverse*, or *neutral* to the relationship viewers have with their visual environment. As such, the Analysis Phase* of a VIA determines the compatibility and sensitivity of the impact as evaluated and measures the degree of impact to visual quality. During the VIA, the following may be evaluated, as defined in Chapter 6 of Guidelines for the Visual Impact Assessment of Highway Projects:

- **Compatibility of the Impact:** Defined as the ability of the environment to absorb the proposed project as a result of the project and the environment having compatible visual characters. The proposed project can be considered compatible or incompatible. By itself, compatibility of the impact should not be confused or conflated with the value of the impact.
- Sensitivity to the Impact: Defined by the ability of viewers to see and care about the project's impacts. The sensitivity to impact is based on viewer sensitivity to changes in the visual character of visual resources. Viewers are either sensitive or insensitive to impacts. By itself, the sensitivity of the impact should not be confused or conflated with the value of the impact.
- **Degree of the Impact:** Defined as either a beneficial, adverse, or neutral change to visual quality. A proposed project may benefit visual quality by enhancing visual resources to create better views of those resources and improve visual quality by viewers. Similarly, the project may adversely affect the visual quality by degrading visual resources or obstructing or altering desired views.

*For complete VIA guidelines including the Analysis Phase (Chapter 6), refer to the Federal Highway Administration's *Guidelines for the Visual Impact Assessment of Highway Projects*, January 2015.

EXISTING AERIAL VIEWS

MENDENHALL PENINSULA FACING SOUTHEAST (Google Earth 2023)

EXISTING SUMMER VIEWS

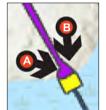
N. DOUGLAS HIGHWAY FACING NORTHEAST (Google Earth 2023)

N. DOUGLAS HIGHWAY FACING SOUTHWEST (Google Earth 2023)

EXISTING WINTER VIEWS

MENDENHALL PENINSULA FACING SOUTHWEST (Google Earth 2023)

N. DOUGLAS HIGHWAY FACING NORTHEAST (January 2024)



D.N. DOUGLAS HIGHWAY FACING SOUTHWEST (January 2024)

MENDENHALL PENINSULA PLAN AERIAL (BING MAPS)

VIEWPOINTS

MENDENHALL PENINSULA CROSSING EXISTING VIEWS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025 FIGURE 3

SIMULATIONS

A. FROM MENDENHALL PENINSULA - FACING SOUTHEAST

B. FROM MENDENHALL PENINSULA - FACING SOUTHWEST

VIEWPOINTS

MENDENHALL PENINSULA CROSSING SIMULATIONS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025 FIGURE 4

SIMULATIONS

C. NORTH DOUGLAS HIGHWAY FACING NORTHEAST

D. NORTH DOUGLAS HIGHWAY FACING SOUTHWEST

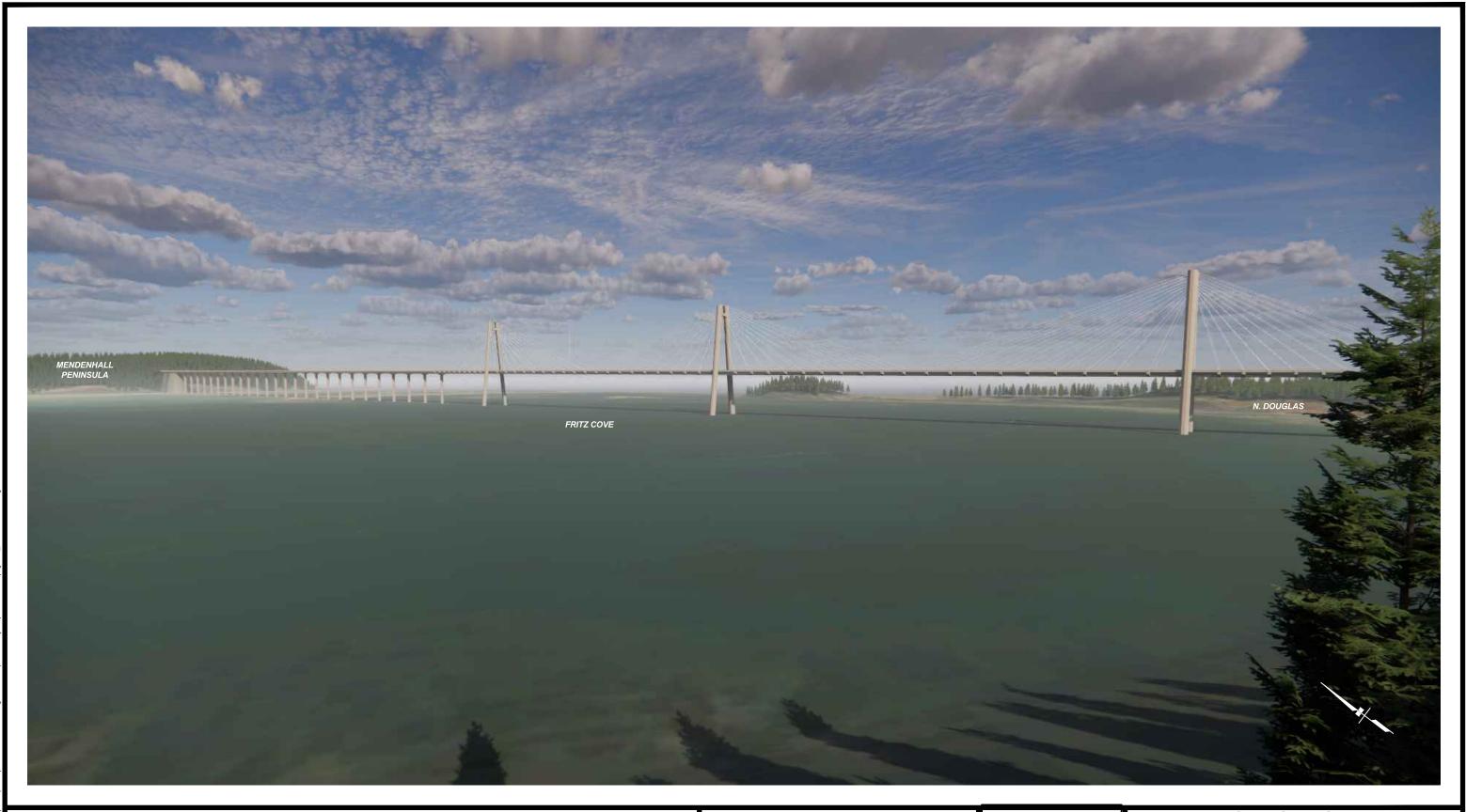
6)

VIEWPOINTS

MENDENHALL PENINSULA CROSSING SIMULATIONS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA



STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025 FIGURE 5

MENDENHALL PENINSULA CROSSING SIMULATION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

MENDENHALL PENINSULA CROSSING SIMULATION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

EXISTING SUMMER VIEWS

A.
EGAN DRIVE FACING EAST
(Google Earth 2023)

EGAN DRIVE FACING WEST (Google Earth 2023)

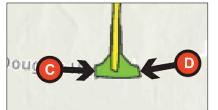
C.
N. DOUGLAS HIGHWAY FACING EAST (Google Earth 2023)

N. DOUGLAS HIGHWAY FACING WEST (Google Earth 2023)

EXISTING WINTER VIEWS

A.
EGAN DRIVE FACING EAST
(January 2024)

B.EGAN DRIVE FACING WEST (January 2024)


N. DOUGLAS HIGHWAY FACING EAST (January 2024)

N. DOUGLAS HIGHWAY FACING WEST (January 2024)

VIEWPOINTS

SUNNY POINT CROSSING EXISTING VIEWS - WEST

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

A. EGAN DRIVE FACING SOUTHEAST

B. EGAN DRIVE FACING SOUTHWEST

VIEWPOINTS

SUNNY POINT CROSSING SIMULATIONS - EGAN WEST

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025 FIGURE 9

oact Analysis\00 FIGURES\Figures_SUNNY POINT.dwg

EXISTING SUMMER VIEWS

EGAN DRIVE FACING SOUTHEAST (Google Earth 2023)

B.
EGAN DRIVE FACING NORTHWEST
(Google Earth 2023)

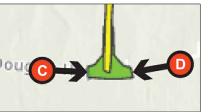
C.
N. DOUGLAS HIGHWAY FACING EAST (Google Earth 2023)

N. DOUGLAS HIGHWAY FACING WEST (Google Earth 2023)

EXISTING WINTER VIEWS

A.
EGAN DRIVE FACING SOUTHEAST
(January 2024)

B.EGAN DRIVE FACING NORTHWEST (January 2024)


N. DOUGLAS HIGHWAY FACING EAST (January 2024)

N. DOUGLAS HIGHWAY FACING WEST (January 2024)

VIEWPOINTS

SUNNY POINT CROSSING EXISTING VIEWS - EAST

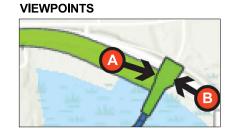
SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA


FEBRUARY 2025 F

A. EGAN DRIVE FACING SOUTHEAST

B. EGAN DRIVE FACING SOUTHWEST

SUNNY POINT CROSSING SIMULATIONS - EGAN EAST

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

Site

SIMULATIONS

C. NORTH DOUGLAS HIGHWAY FACING EAST

D. NORTH DOUGLAS HIGHWAY FACING WEST

VIEWPOINTS

SUNNY POINT CROSSING SIMULATIONS - DOUGLAS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

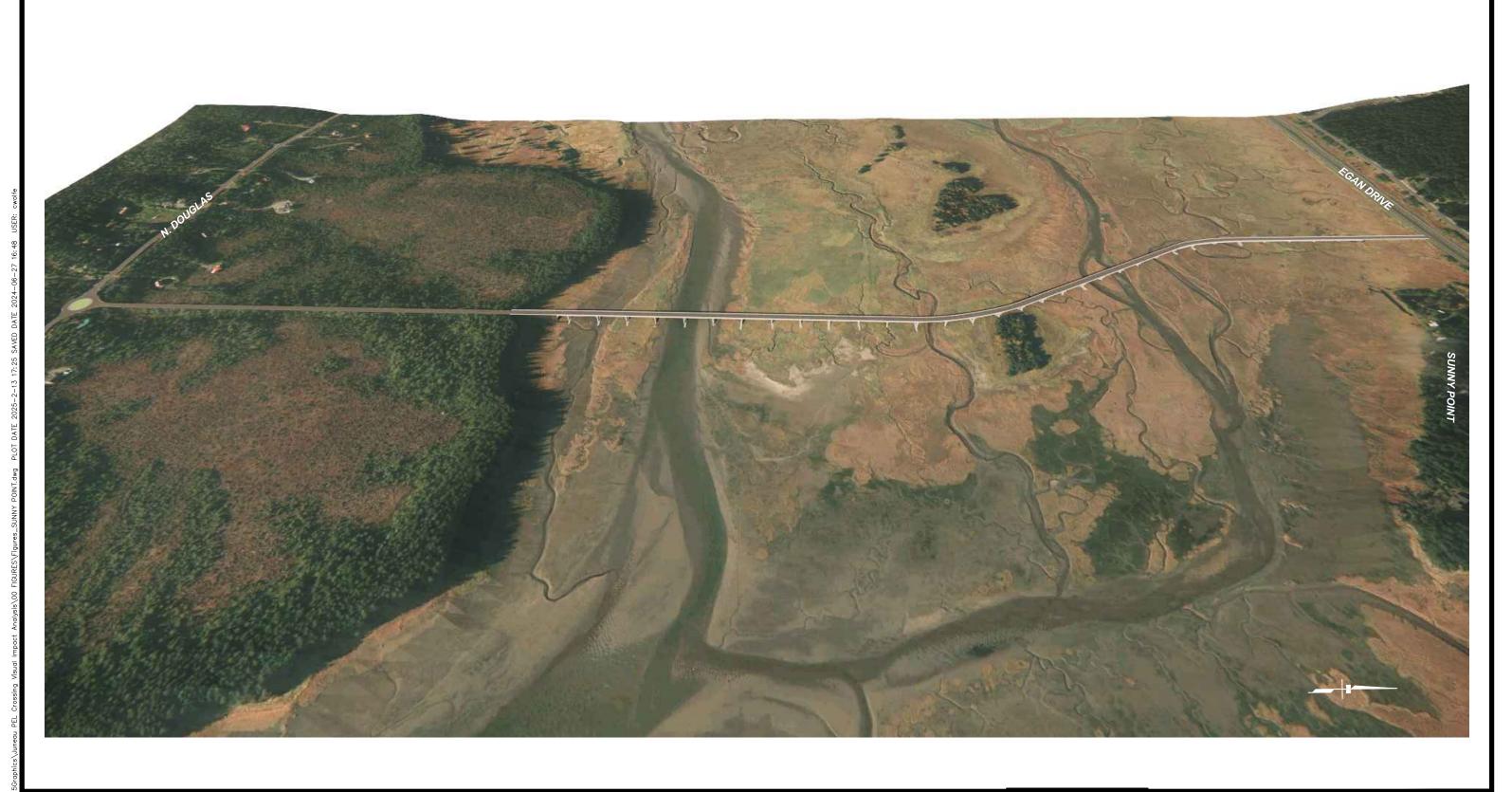
DOT&PF PROJECT NO. SFHWY00299/0003259
JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

SUNNY POINT CROSSING SIMULATION - WEST CONNECTION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA



STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

SUNNY POINT CROSSING SIMULATION - WEST CONNECTION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025 F

SUNNY POINT CROSSING SIMULATION - EAST CONNECTION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

SUNNY POINT CROSSING SIMULATION - EAST CONNECTION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

EXISTING SUMMER VIEWS

EGAN DRIVE FACING SOUTHEAST (Google Earth 2023)

EGAN DRIVE FACING NORTHWEST (Google Earth 2023)

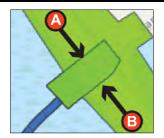
N. DOUGLAS HIGHWAY FACING SOUTHEAST (Google Earth 2023)

N. DOUGLAS HIGHWAY FACING NORTHWEST (Google Earth 2023)

EXISTING WINTER VIEWS

A.
EGAN DRIVE FACING SOUTHEAST
(January 2024)

B.EGAN DRIVE FACING NORTHWEST (January 2024)



N. DOUGLAS HIGHWAY FACING SOUTHEAST (January 2024)

N. DOUGLAS HIGHWAY FACING NORTHWEST (January 2024)

VIEWPOINTS

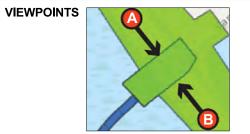
VANDERBILT CROSSING EXISTING VIEWS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY


CITY AND BOROUGH OF JUNEAU, ALASKA

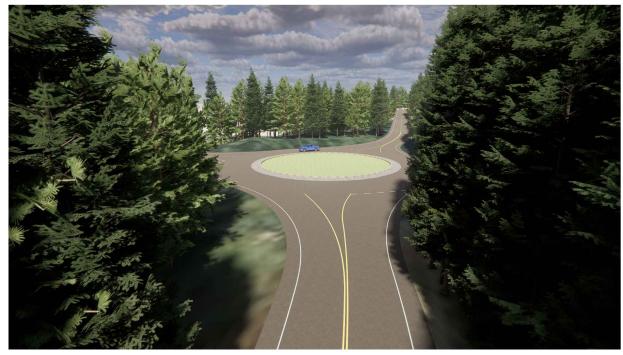
A. EGAN DRIVE FACING SOUTHEAST

B. EGAN DRIVE FACING NORTHWEST

VANDERBILT CROSSING SIMULATIONS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA



STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

C. NORTH DOUGLAS HIGHWAY FACING SOUTHEAST

D. NORTH DOUGLAS HIGHWAY FACING NORTHWEST

VIEWPOINTS

VANDERBILT CROSSING SIMULATIONS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

VANDERBILT CROSSING SIMULATION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

VANDERBILT CROSSING SIMULATION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

EXISTING SUMMER VIEWS

A.EGAN DRIVE FACING SOUTHEAST (Google Earth 2023)

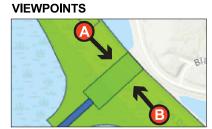
EGAN DRIVE FACING NORTHWEST (Google Earth 2023)

N. DOUGLAS HIGHWAY FACING SOUTHEAST (Google Earth 2023)

N. DOUGLAS HIGHWAY FACING NORTHWEST (Google Earth 2023)

EXISTING WINTER VIEWS

A.
EGAN DRIVE FACING SOUTHEAST
(January 2024)


EGAN DRIVE FACING NORTHWEST (January 2024)

N. DOUGLAS HIGHWAY FACING SOUTHEAST (January 2024)

N. DOUGLAS HIGHWAY FACING NORTHWEST (January 2024)

TWIN LAKES CROSSING EXISTING VIEWS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

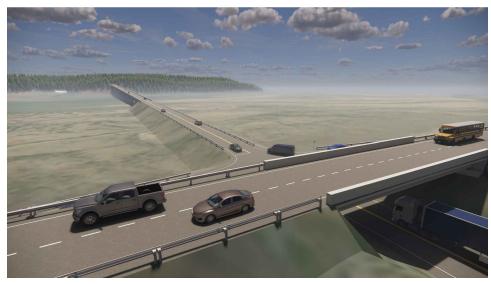
DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

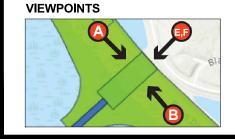
CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

Vanderbilt Hill

SIMULATIONS


A. EGAN DRIVE FACING SOUTHEAST


B. EGAN DRIVE FACING NORTHWEST

E. EGAN DRIVE & GLACIER HIGHWAY INTERSECTION FACING SOUTHEAST

F. EGAN DRIVE & GLACIER HIGHWAY INTERSECTION FACING SOUTHWEST

TWIN LAKES CROSSING **SIMULATIONS**

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

C. NORTH DOUGLAS HIGHWAY FACING SOUTHEAST

D. NORTH DOUGLAS HIGHWAY FACING NORTHWEST

TWIN LAKES CROSSING SIMULATIONS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259
JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

TWIN LAKES CROSSING SIMULATION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

EXISTING SUMMER VIEWS

A.
CHANNEL DRIVE FACING SOUTHEAST
(Google Earth 2023)

CHANNEL DRIVE FACING NORTHWEST (Google Earth 2023)

N. DOUGLAS HIGHWAY FACING SOUTHEAST (Google Earth 2023)

N. DOUGLAS HIGHWAY FACING NORTHWEST (Google Earth 2023)

EXISTING WINTER VIEWS

A.
CHANNEL DRIVE FACING SOUTHEAST
(January 2024)

B.CHANNEL DRIVE FACING NORTHWEST
(January 2024)

N. DOUGLAS HIGHWAY FACING SOUTHEAST (January 2024)

N. DOUGLAS HIGHWAY FACING NORTHWEST (January 2024)

VIEWPOINTS

SALMON CREEK CROSSING EXISTING VIEWS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

A. CHANNEL DRIVE FACING SOUTHEAST

B. CHANNEL DRIVE FACING NORTHWEST

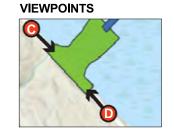
SALMON CREEK CROSSING SIMULATIONS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY


CITY AND BOROUGH OF JUNEAU, ALASKA

C. NORTH DOUGLAS HIGHWAY FACING SOUTHEAST

D. NORTH DOUGLAS HIGHWAY FACING NORTHWEST

SALMON CREEK CROSSING SIMULATIONS

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259
JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025

SALMON CREEK CROSSING SIMULATION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

SALMON CREEK CROSSING SIMULATION

SEC 25 - 27, 34 - 36, T 40S, R 65E; SEC 30 -34, T 40S, R 66E SEC 1 - 12, 15 - 17, T 41S, R 66E; SEC 4 - 10, 15 - 17, 21 - 23, 27 T 41S, R 67E

COPPER RIVER MERIDIAN, ALASKA

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

DOT&PF PROJECT NO. SFHWY00299/0003259 JUNEAU DOUGLAS NORTH CROSSING PEL STUDY

CITY AND BOROUGH OF JUNEAU, ALASKA

FEBRUARY 2025